{"title":"The Design and Application of DNA-Editing Enzymes as Base Editors.","authors":"Kartik L Rallapalli, Alexis C Komor","doi":"10.1146/annurev-biochem-052521-013938","DOIUrl":null,"url":null,"abstract":"<p><p>DNA-editing enzymes perform chemical reactions on DNA nucleobases. These reactions can change the genetic identity of the modified base or modulate gene expression. Interest in DNA-editing enzymes has burgeoned in recent years due to the advent of clustered regularly interspaced short palindromic repeat-associated (CRISPR-Cas) systems, which can be used to direct their DNA-editing activity to specific genomic loci of interest. In this review, we showcase DNA-editing enzymes that have been repurposed or redesigned and developed into programmable base editors. These include deaminases, glycosylases, methyltransferases, and demethylases. We highlight the astounding degree to which these enzymes have been redesigned, evolved, and refined and present these collective engineering efforts as a paragon for future efforts to repurpose and engineer other families of enzymes. Collectively, base editors derived from these DNA-editing enzymes facilitate programmable point mutation introduction and gene expression modulation by targeted chemical modification of nucleobases.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":"92 ","pages":"43-79"},"PeriodicalIF":12.1000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330504/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biochem-052521-013938","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA-editing enzymes perform chemical reactions on DNA nucleobases. These reactions can change the genetic identity of the modified base or modulate gene expression. Interest in DNA-editing enzymes has burgeoned in recent years due to the advent of clustered regularly interspaced short palindromic repeat-associated (CRISPR-Cas) systems, which can be used to direct their DNA-editing activity to specific genomic loci of interest. In this review, we showcase DNA-editing enzymes that have been repurposed or redesigned and developed into programmable base editors. These include deaminases, glycosylases, methyltransferases, and demethylases. We highlight the astounding degree to which these enzymes have been redesigned, evolved, and refined and present these collective engineering efforts as a paragon for future efforts to repurpose and engineer other families of enzymes. Collectively, base editors derived from these DNA-editing enzymes facilitate programmable point mutation introduction and gene expression modulation by targeted chemical modification of nucleobases.
DNA 编辑酶对 DNA 核碱基进行化学反应。这些反应可以改变被修饰碱基的遗传特性或调节基因表达。近年来,由于聚类规则间距短回文重复相关(CRISPR-Cas)系统的出现,人们对DNA编辑酶的兴趣急剧增加。在这篇综述中,我们展示了被重新利用或重新设计并开发成可编程碱基编辑器的DNA编辑酶。这些酶包括脱氨酶、糖基化酶、甲基转移酶和去甲基化酶。我们强调了这些酶被重新设计、进化和完善的惊人程度,并介绍了这些集体工程努力,作为未来重新利用和工程化其他酶家族的典范。总的来说,从这些 DNA 编辑酶中衍生出来的碱基编辑器通过对核酸进行有针对性的化学修饰,促进了可编程点突变的引入和基因表达的调控。
期刊介绍:
The Annual Review of Biochemistry, in publication since 1932, sets the standard for review articles in biological chemistry and molecular biology. Since its inception, these volumes have served as an indispensable resource for both the practicing biochemist and students of biochemistry.