Davide Mei, Elena Parrini, Claudia Bianchini, Maria Luisa Ricci, Renzo Guerrini
{"title":"Autism and mild epilepsy associated with a de novo missense pathogenic variant in the GTPase effector domain of DNM1.","authors":"Davide Mei, Elena Parrini, Claudia Bianchini, Maria Luisa Ricci, Renzo Guerrini","doi":"10.1002/ajmg.c.32044","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamin 1 is a GTPase protein involved in synaptic vesicle fission, which facilitates the exocytosis of neurotransmitters necessary for normal signaling. Pathogenic variants in the DNM1 gene are associated with intractable epilepsy, often manifested as infantile spasms at onset, developmental delay, and a movement disorder, and are located in the GTPase and middle domains of the protein. We describe a 36-year-old man with autism and moderate intellectual disability who experienced only a few generalized seizures between the age 16 and 30 years. Using a whole sequencing approach, we identified the c.1994T>C p.(Leu665Pro) de novo novel missense pathogenic variant in the GTPase effector domain (GED) of the DNM1 protein. Structural analyses suggest that this substitution impairs both the stalk formation and its interactions, known to be important for the dynamin-1 physiological cellular function. Our data expand the spectrum of phenotypes associated with pathogenic variants in the DNM1 gene, linking a variant in the GED domain with autism and onset in the adolescence of mild epilepsy, a phenotypic presentation remarkably different from the early infantile epileptic encephalopathy associated with pathogenic variants in the GTPase or middle domains.</p>","PeriodicalId":7445,"journal":{"name":"American Journal of Medical Genetics Part C: Seminars in Medical Genetics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Medical Genetics Part C: Seminars in Medical Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ajmg.c.32044","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 2
Abstract
Dynamin 1 is a GTPase protein involved in synaptic vesicle fission, which facilitates the exocytosis of neurotransmitters necessary for normal signaling. Pathogenic variants in the DNM1 gene are associated with intractable epilepsy, often manifested as infantile spasms at onset, developmental delay, and a movement disorder, and are located in the GTPase and middle domains of the protein. We describe a 36-year-old man with autism and moderate intellectual disability who experienced only a few generalized seizures between the age 16 and 30 years. Using a whole sequencing approach, we identified the c.1994T>C p.(Leu665Pro) de novo novel missense pathogenic variant in the GTPase effector domain (GED) of the DNM1 protein. Structural analyses suggest that this substitution impairs both the stalk formation and its interactions, known to be important for the dynamin-1 physiological cellular function. Our data expand the spectrum of phenotypes associated with pathogenic variants in the DNM1 gene, linking a variant in the GED domain with autism and onset in the adolescence of mild epilepsy, a phenotypic presentation remarkably different from the early infantile epileptic encephalopathy associated with pathogenic variants in the GTPase or middle domains.
期刊介绍:
Seminars in Medical Genetics, Part C of the American Journal of Medical Genetics (AJMG) , serves as both an educational resource and review forum, providing critical, in-depth retrospectives for students, practitioners, and associated professionals working in fields of human and medical genetics. Each issue is guest edited by a researcher in a featured area of genetics, offering a collection of thematic reviews from specialists around the world. Seminars in Medical Genetics publishes four times per year.