Elizabeth Vinod, Ganesh Parasuraman, Abel Livingston, Soosai Manickam Amirtham, Grace Rebekah, J Jeya Lisha, Alfred Job Daniel, Solomon Sathishkumar
{"title":"Comparison of methods for the isolation and culture of Migratory chondroprogenitors from Human articular cartilage.","authors":"Elizabeth Vinod, Ganesh Parasuraman, Abel Livingston, Soosai Manickam Amirtham, Grace Rebekah, J Jeya Lisha, Alfred Job Daniel, Solomon Sathishkumar","doi":"10.1080/03008207.2023.2202266","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Resident articular stem cells isolated using a migratory assay called Migratory Chondroprogenitors (MCPs) have emerged as a promising cellular therapeutic for the treatment of cartilage pathologies. In-vivo studies using MCPs report their superiority over bone-marrow mesenchymal stem cells and chondrocytes for treating chondral defects. However, there is no consensus on their isolation protocol. This study aimed to compare four reported isolation methods of MCPs and identify the optimal and feasible protocol for future translational work.</p><p><strong>Methods: </strong>Human MCPs isolated from osteoarthritic cartilage (<i>n</i> = 3) were divided into four groups: a) MCP1: 8-15 mm cartilage explants, b) MCP2: 8-10 mm explants digested in 0.1% collagenase for 2 hrs. and cultured c) MCP3: 1 mm cartilage explants and d) MCP 4: 25 mm explants with a X tear, 7-day culture, and trypsinization to release migrated cells. The MCPs were subjected to the following analysis: growth kinetics, surface marker expression, mRNA gene expression for markers of chondrogenesis and hypertrophy, and trilineage differentiation.</p><p><strong>Results: </strong>MCPs isolated via the four methods showed similar surface marker profiles, chondrogenic (SOX-9, ACAN, COL2A1) and hypertrophic (COL1, RUNX2) gene expression. The migration time for the MCP3 group was the longest. The MCP1, MCP2, and MCP4 groups produced MCPs with comparable cellular expansion feasibility.</p><p><strong>Conclusions: </strong>MCPs can be preferably isolated by the any of the three above methods based on the investigator's discretion. In the case of small cartilage samples similar to the MCP3 group, the isolation of MCP is plausible, keeping in mind the additional time required.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 4","pages":"389-399"},"PeriodicalIF":2.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2023.2202266","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Resident articular stem cells isolated using a migratory assay called Migratory Chondroprogenitors (MCPs) have emerged as a promising cellular therapeutic for the treatment of cartilage pathologies. In-vivo studies using MCPs report their superiority over bone-marrow mesenchymal stem cells and chondrocytes for treating chondral defects. However, there is no consensus on their isolation protocol. This study aimed to compare four reported isolation methods of MCPs and identify the optimal and feasible protocol for future translational work.
Methods: Human MCPs isolated from osteoarthritic cartilage (n = 3) were divided into four groups: a) MCP1: 8-15 mm cartilage explants, b) MCP2: 8-10 mm explants digested in 0.1% collagenase for 2 hrs. and cultured c) MCP3: 1 mm cartilage explants and d) MCP 4: 25 mm explants with a X tear, 7-day culture, and trypsinization to release migrated cells. The MCPs were subjected to the following analysis: growth kinetics, surface marker expression, mRNA gene expression for markers of chondrogenesis and hypertrophy, and trilineage differentiation.
Results: MCPs isolated via the four methods showed similar surface marker profiles, chondrogenic (SOX-9, ACAN, COL2A1) and hypertrophic (COL1, RUNX2) gene expression. The migration time for the MCP3 group was the longest. The MCP1, MCP2, and MCP4 groups produced MCPs with comparable cellular expansion feasibility.
Conclusions: MCPs can be preferably isolated by the any of the three above methods based on the investigator's discretion. In the case of small cartilage samples similar to the MCP3 group, the isolation of MCP is plausible, keeping in mind the additional time required.
期刊介绍:
The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology.
The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented.
The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including
Biochemistry
Cell and Molecular Biology
Immunology
Structural Biology
Biophysics
Biomechanics
Regenerative Medicine
The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.