Marcos Jiménez, Francisco J Abad, Eduardo Garcia-Garzon, Hudson Golino, Alexander P Christensen, Luis Eduardo Garrido
{"title":"Dimensionality assessment in bifactor structures with multiple general factors: A network psychometrics approach.","authors":"Marcos Jiménez, Francisco J Abad, Eduardo Garcia-Garzon, Hudson Golino, Alexander P Christensen, Luis Eduardo Garrido","doi":"10.1037/met0000590","DOIUrl":null,"url":null,"abstract":"<p><p>The accuracy of factor retention methods for structures with one or more general factors, like the ones typically encountered in fields like intelligence, personality, and psychopathology, has often been overlooked in dimensionality research. To address this issue, we compared the performance of several factor retention methods in this context, including a network psychometrics approach developed in this study. For estimating the number of group factors, these methods were the Kaiser criterion, empirical Kaiser criterion, parallel analysis with principal components (PA<sub>PCA</sub>) or principal axis, and exploratory graph analysis with Louvain clustering (EGA<sub>LV</sub>). We then estimated the number of general factors using the factor scores of the first-order solution suggested by the best two methods, yielding a \"second-order\" version of PA<sub>PCA</sub> (PAP<sub>CA-FS</sub>) and EGA<sub>LV</sub> (EGA<sub>LV-FS</sub>). Additionally, we examined the direct multilevel solution provided by EGA<sub>LV</sub>. All the methods were evaluated in an extensive simulation manipulating nine variables of interest, including population error. The results indicated that EGA<sub>LV</sub> and PA<sub>PCA</sub> displayed the best overall performance in retrieving the true number of group factors, the former being more sensitive to high cross-loadings, and the latter to weak group factors and small samples. Regarding the estimation of the number of general factors, both PAP<sub>CA-FS</sub> and EGA<sub>LV-FS</sub> showed a close to perfect accuracy across all the conditions, while EGA<sub>LV</sub> was inaccurate. The methods based on EGA were robust to the conditions most likely to be encountered in practice. Therefore, we highlight the particular usefulness of EGA<sub>LV</sub> (group factors) and EGA<sub>LV-FS</sub> (general factors) for assessing bifactor structures with multiple general factors. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000590","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The accuracy of factor retention methods for structures with one or more general factors, like the ones typically encountered in fields like intelligence, personality, and psychopathology, has often been overlooked in dimensionality research. To address this issue, we compared the performance of several factor retention methods in this context, including a network psychometrics approach developed in this study. For estimating the number of group factors, these methods were the Kaiser criterion, empirical Kaiser criterion, parallel analysis with principal components (PAPCA) or principal axis, and exploratory graph analysis with Louvain clustering (EGALV). We then estimated the number of general factors using the factor scores of the first-order solution suggested by the best two methods, yielding a "second-order" version of PAPCA (PAPCA-FS) and EGALV (EGALV-FS). Additionally, we examined the direct multilevel solution provided by EGALV. All the methods were evaluated in an extensive simulation manipulating nine variables of interest, including population error. The results indicated that EGALV and PAPCA displayed the best overall performance in retrieving the true number of group factors, the former being more sensitive to high cross-loadings, and the latter to weak group factors and small samples. Regarding the estimation of the number of general factors, both PAPCA-FS and EGALV-FS showed a close to perfect accuracy across all the conditions, while EGALV was inaccurate. The methods based on EGA were robust to the conditions most likely to be encountered in practice. Therefore, we highlight the particular usefulness of EGALV (group factors) and EGALV-FS (general factors) for assessing bifactor structures with multiple general factors. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.