[Research progress on the effect of mitochondrial network remodeling on macrophages].

Lianlian Zhu, Xiangmin Kong, Wei Zhu
{"title":"[Research progress on the effect of mitochondrial network remodeling on macrophages].","authors":"Lianlian Zhu,&nbsp;Xiangmin Kong,&nbsp;Wei Zhu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Remodeling of the mitochondrial network is an important process in the maintenance of cellular homeostasis and is closely related to mitochondrial function. Interactions between the biogenesis of new mitochondria and the clearance of damaged mitochondria (mitophagy) is an important manifestation of mitochondrial network remodeling. Mitochondrial fission and fusion act as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been described in a variety of tissues and cell types and under a variety of conditions. For example, robust remodeling of the mitochondrial network has been reported during the polarization and effector function of macrophages. Previous studies have also revealed the important role of mitochondrial morphological structure and metabolic changes in regulating the function of macrophages. Therefore, the processes that regulate remodeling of the mitochondrial network also play a crucial role in the immune response of macrophages. In this paper, we focus on the molecular mechanisms of mitochondrial regeneration, fission, fusion, and mitophagy in the process of mitochondrial network remodeling, and integrate these mechanisms to investigate their biological roles in macrophage polarization, inflammasome activation, and efferocytosis.</p>","PeriodicalId":23737,"journal":{"name":"Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology","volume":"39 7","pages":"656-662"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Remodeling of the mitochondrial network is an important process in the maintenance of cellular homeostasis and is closely related to mitochondrial function. Interactions between the biogenesis of new mitochondria and the clearance of damaged mitochondria (mitophagy) is an important manifestation of mitochondrial network remodeling. Mitochondrial fission and fusion act as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been described in a variety of tissues and cell types and under a variety of conditions. For example, robust remodeling of the mitochondrial network has been reported during the polarization and effector function of macrophages. Previous studies have also revealed the important role of mitochondrial morphological structure and metabolic changes in regulating the function of macrophages. Therefore, the processes that regulate remodeling of the mitochondrial network also play a crucial role in the immune response of macrophages. In this paper, we focus on the molecular mechanisms of mitochondrial regeneration, fission, fusion, and mitophagy in the process of mitochondrial network remodeling, and integrate these mechanisms to investigate their biological roles in macrophage polarization, inflammasome activation, and efferocytosis.

线粒体网络重构对巨噬细胞影响的研究进展。
线粒体网络的重塑是维持细胞内稳态的重要过程,与线粒体功能密切相关。新线粒体的生物发生与受损线粒体的清除(线粒体自噬)之间的相互作用是线粒体网络重构的重要表现。线粒体分裂和融合是生物发生和线粒体自噬之间的桥梁。近年来,这些过程的重要性已经在各种组织和细胞类型和各种条件下被描述。例如,在巨噬细胞的极化和效应功能过程中,线粒体网络的强大重塑已经被报道。以往的研究也揭示了线粒体形态结构和代谢变化在调节巨噬细胞功能中的重要作用。因此,调节线粒体网络重塑的过程在巨噬细胞的免疫应答中也起着至关重要的作用。本文主要从线粒体网络重构过程中线粒体再生、裂变、融合和线粒体自噬的分子机制出发,整合这些机制,探讨其在巨噬细胞极化、炎性体活化和efferocytosis中的生物学作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信