Lin Wang, Yajun Mao, Yugang Lu, Yawei Yuan, Yanwu Jin
{"title":"Knockdown of lncRNA BDNF-AS alleviates isoflurane-induced neuro-inflammation and cognitive dysfunction through modulating miR-214-3p.","authors":"Lin Wang, Yajun Mao, Yugang Lu, Yawei Yuan, Yanwu Jin","doi":"10.5114/fn.2022.123650","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>As one of the most commonly used anesthetics, isoflurane has been demonstrated to possess a variety of protective effects. However, its' neurological impaired effect should be considered during clinical application. Roles of lncRNA BDNF-AS (BDNF-AS) and miR-214-3p in isoflurane-injured microglia and rats were investigated in this study, aiming to disclose the mechanism of isoflurane damage and to provide candidate therapeutic targets.</p><p><strong>Material and methods: </strong>Isoflurane-induced microglia cells and rat models were established with 1.5% isoflurane. Inflammation and oxidative stress of microglia cells were evaluated with a level of pro-inflammation cytokines, malondialdehyde (MDA), superoxide dismutase (SOD), and nitrite. Cognitive and learning function of rats were assessed with Morris water maze task. Expressions of BDNF-AS and miR-214-3p and their function in the isoflurane-induced microglia cells and rats were estimated with PCR and corresponding transfection.</p><p><strong>Results: </strong>Isoflurane induced significant neuro-inflammation and oxidative stress in the microglia cells. The increased BDNF-AS and the decreased miR-214-3p were noted, and BDNF-AS was found to negatively regulate miR-214-3p in the isoflurane-induced microglia cells. Isoflurane caused cognitive dysfunction in rats, and resulted in a significant inflammatory response. The knockdown of BDNF-AS significantly alleviated the neurological impairment induced by isoflurane, which was reversed by silencing miR-214-3p.</p><p><strong>Conclusions: </strong>In isoflurane-induced neuro-inflammation and cognitive dysfunction, BDNF-AS showed a significant protective effect on the neurological impairment induced by isoflurane through modulating miR-214-3p.</p>","PeriodicalId":12370,"journal":{"name":"Folia neuropathologica","volume":"61 1","pages":"68-76"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/fn.2022.123650","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: As one of the most commonly used anesthetics, isoflurane has been demonstrated to possess a variety of protective effects. However, its' neurological impaired effect should be considered during clinical application. Roles of lncRNA BDNF-AS (BDNF-AS) and miR-214-3p in isoflurane-injured microglia and rats were investigated in this study, aiming to disclose the mechanism of isoflurane damage and to provide candidate therapeutic targets.
Material and methods: Isoflurane-induced microglia cells and rat models were established with 1.5% isoflurane. Inflammation and oxidative stress of microglia cells were evaluated with a level of pro-inflammation cytokines, malondialdehyde (MDA), superoxide dismutase (SOD), and nitrite. Cognitive and learning function of rats were assessed with Morris water maze task. Expressions of BDNF-AS and miR-214-3p and their function in the isoflurane-induced microglia cells and rats were estimated with PCR and corresponding transfection.
Results: Isoflurane induced significant neuro-inflammation and oxidative stress in the microglia cells. The increased BDNF-AS and the decreased miR-214-3p were noted, and BDNF-AS was found to negatively regulate miR-214-3p in the isoflurane-induced microglia cells. Isoflurane caused cognitive dysfunction in rats, and resulted in a significant inflammatory response. The knockdown of BDNF-AS significantly alleviated the neurological impairment induced by isoflurane, which was reversed by silencing miR-214-3p.
Conclusions: In isoflurane-induced neuro-inflammation and cognitive dysfunction, BDNF-AS showed a significant protective effect on the neurological impairment induced by isoflurane through modulating miR-214-3p.
期刊介绍:
Folia Neuropathologica is an official journal of the Mossakowski Medical Research Centre Polish Academy of Sciences and the Polish Association of Neuropathologists. The journal publishes original articles and reviews that deal with all aspects of clinical and experimental neuropathology and related fields of neuroscience research. The scope of journal includes surgical and experimental pathomorphology, ultrastructure, immunohistochemistry, biochemistry and molecular biology of the nervous tissue. Papers on surgical neuropathology and neuroimaging are also welcome. The reports in other fields relevant to the understanding of human neuropathology might be considered.