Transcriptional Factors Mediated Reprogramming to Pluripotency.

IF 2.1 4区 医学 Q4 CELL & TISSUE ENGINEERING
Nazira Fatima, Muhammad Saif Ur Rahman, Muhammad Qasim, Usman Ali Ashfaq, Uzair Ahmed, Muhammad Shareef Masoud
{"title":"Transcriptional Factors Mediated Reprogramming to Pluripotency.","authors":"Nazira Fatima, Muhammad Saif Ur Rahman, Muhammad Qasim, Usman Ali Ashfaq, Uzair Ahmed, Muhammad Shareef Masoud","doi":"10.2174/1574888X18666230417084518","DOIUrl":null,"url":null,"abstract":"<p><p>A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current stem cell research & therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1574888X18666230417084518","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.

转录因子介导的多能性重编程
一种独特的多能细胞,即诱导多能干细胞(iPSCs),目前正成为 iPSC 合成的目标,它是通过对动物和人类分化细胞进行重编程而产生的(为了形成高效的 iPSCs,不改变基因组成)。将特定细胞转化为 iPSCs 使多能细胞在再生治疗中更加可控,从而彻底改变了干细胞研究。在过去的 15 年里,通过强制表达特定因子将体细胞重编程为多能性细胞一直是生物医学研究的一个引人入胜的领域。该技术的主要观点重编程方法需要四种转录因子(TF)的鸡尾酒:Kruppel-like factor 4 (KLF4)、four-octamer binding protein 34 (OCT3/4)、MYC 和 SOX2(合称 OSKM)以及宿主细胞。尽管医学界对因子介导的重编程机制仍知之甚少,但IPS细胞具有自我更新和专化所有成体细胞类型的能力,因此在未来的组织替代治疗中具有巨大潜力。这种技术大大提高了性能和效率,使其在药物发现、疾病重塑和再生医学中更加有用。此外,在这四种 TF 鸡尾酒中,提出了 30 多种重编程组合,但就重编程的有效性而言,只有少数几种组合在人类和小鼠的体细胞中得到了证实。重新编程剂和染色质重塑化合物的组合 "配比 "影响着干细胞研究的动力学、质量和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current stem cell research & therapy
Current stem cell research & therapy CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
4.20
自引率
3.70%
发文量
197
审稿时长
>12 weeks
期刊介绍: Current Stem Cell Research & Therapy publishes high quality frontier reviews, drug clinical trial studies and guest edited issues on all aspects of basic research on stem cells and their uses in clinical therapy. The journal is essential reading for all researchers and clinicians involved in stem cells research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信