Weakly Supervised Captioning of Ultrasound Images.

Mohammad Alsharid, Harshita Sharma, Lior Drukker, Aris T Papageorgiou, J Alison Noble
{"title":"Weakly Supervised Captioning of Ultrasound Images.","authors":"Mohammad Alsharid,&nbsp;Harshita Sharma,&nbsp;Lior Drukker,&nbsp;Aris T Papageorgiou,&nbsp;J Alison Noble","doi":"10.1007/978-3-031-12053-4_14","DOIUrl":null,"url":null,"abstract":"<p><p>Medical image captioning models generate text to describe the semantic contents of an image, aiding the non-experts in understanding and interpretation. We propose a weakly-supervised approach to improve the performance of image captioning models on small image-text datasets by leveraging a large anatomically-labelled image classification dataset. Our method generates pseudo-captions (weak labels) for caption-less but anatomically-labelled (class-labelled) images using an encoder-decoder sequence-to-sequence model. The augmented dataset is used to train an image-captioning model in a weakly supervised learning manner. For fetal ultrasound, we demonstrate that the proposed augmentation approach outperforms the baseline on semantics and syntax-based metrics, with nearly twice as much improvement in value on <i>BLEU-1</i> and <i>ROUGE-L</i>. Moreover, we observe that superior models are trained with the proposed data augmentation, when compared with the existing regularization techniques. This work allows seamless automatic annotation of images that lack human-prepared descriptive captions for training image-captioning models. Using pseudo-captions in the training data is particularly useful for medical image captioning when significant time and effort of medical experts is required to obtain real image captions.</p>","PeriodicalId":74147,"journal":{"name":"Medical image understanding and analysis : 26th annual conference, MIUA 2022, Cambridge, UK, July 27-29, 2022, proceedings. Medical Image Understanding and Analysis (Conference) (26th : 2022 : Cambridge, England)","volume":"13413 ","pages":"187-198"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614238/pdf/EMS159395.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image understanding and analysis : 26th annual conference, MIUA 2022, Cambridge, UK, July 27-29, 2022, proceedings. Medical Image Understanding and Analysis (Conference) (26th : 2022 : Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-12053-4_14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Medical image captioning models generate text to describe the semantic contents of an image, aiding the non-experts in understanding and interpretation. We propose a weakly-supervised approach to improve the performance of image captioning models on small image-text datasets by leveraging a large anatomically-labelled image classification dataset. Our method generates pseudo-captions (weak labels) for caption-less but anatomically-labelled (class-labelled) images using an encoder-decoder sequence-to-sequence model. The augmented dataset is used to train an image-captioning model in a weakly supervised learning manner. For fetal ultrasound, we demonstrate that the proposed augmentation approach outperforms the baseline on semantics and syntax-based metrics, with nearly twice as much improvement in value on BLEU-1 and ROUGE-L. Moreover, we observe that superior models are trained with the proposed data augmentation, when compared with the existing regularization techniques. This work allows seamless automatic annotation of images that lack human-prepared descriptive captions for training image-captioning models. Using pseudo-captions in the training data is particularly useful for medical image captioning when significant time and effort of medical experts is required to obtain real image captions.

Abstract Image

Abstract Image

Abstract Image

超声图像的弱监督字幕。
医学图像字幕模型生成文本来描述图像的语义内容,帮助非专家理解和解释。我们提出了一种弱监督的方法,通过利用大型解剖标记的图像分类数据集来提高图像字幕模型在小型图像-文本数据集上的性能。我们的方法使用编码器-解码器序列到序列模型为无标题但解剖标记(类标记)的图像生成伪标题(弱标签)。增强的数据集用于以弱监督学习的方式训练图像字幕模型。对于胎儿超声,我们证明了所提出的增强方法在基于语义和语法的指标上优于基线,在blue -1和ROUGE-L上的价值提高了近两倍。此外,我们观察到,与现有的正则化技术相比,所提出的数据增强训练出的模型更优。这项工作允许对缺乏人工准备的描述性字幕的图像进行无缝自动注释,以训练图像字幕模型。当医学专家需要花费大量的时间和精力来获得真实的图像字幕时,在训练数据中使用伪字幕对医学图像字幕特别有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信