{"title":"Loss-of-function mutations in IQCN cause male infertility in humans and mice owing to total fertilization failure.","authors":"Yulin Wang, Guoyong Chen, Zhenzhen Tang, Xiaoyan Mei, Chunli Lin, Jingyi Kang, Jianqing Lian, Jun Lu, Yun Liu, Fenghua Lan, Wujian Huang, Duo Zhang","doi":"10.1093/molehr/gaad018","DOIUrl":null,"url":null,"abstract":"<p><p>Fertilization failure is a significant manifestation of unexplained male infertility. Previous work has suggested a genetic origin. In this study, we report on a man with unexplained infertility from a large consanguineous marriage family. Whole-exome sequencing and Sanger sequencing identified a homozygous frameshift variation of the IQ motif containing N (IQCN; GenBank: NM_001145304.1; c.1061_1062delAT; p.Y354Sfs*13) in the proband and one of his two brothers, who also remained infertile. Analyses of spermatozoa by quantitative RT-PCR indicated that the level of IQCN mRNA was significantly reduced compared to fertile men and the protein could not be detected by western blotting and immunofluorescent staining in the proband. Immunofluorescent staining of spermatozoa from fertile men showed that IQCN was located in the acrosomal region and translocated to the equatorial segment after the acrosome reaction. The proband spermatozoa had abnormal morphology and function. Finally, the proband couple underwent IVF with donor sperm and a healthy baby was born. Furthermore, we developed an Iqcn-KO mouse model using the CRISPR/Cas9 technique. Sperm quality, except for sperm motility, and the fertility of male Iqcn-/- mice were consistent with those of the proband. In conclusion, the findings in humans and mice demonstrate that the homozygous frameshift variant of IQCN causes male infertility owing to autosomal-recessive fertilization failure.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"29 7","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular human reproduction","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/molehr/gaad018","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fertilization failure is a significant manifestation of unexplained male infertility. Previous work has suggested a genetic origin. In this study, we report on a man with unexplained infertility from a large consanguineous marriage family. Whole-exome sequencing and Sanger sequencing identified a homozygous frameshift variation of the IQ motif containing N (IQCN; GenBank: NM_001145304.1; c.1061_1062delAT; p.Y354Sfs*13) in the proband and one of his two brothers, who also remained infertile. Analyses of spermatozoa by quantitative RT-PCR indicated that the level of IQCN mRNA was significantly reduced compared to fertile men and the protein could not be detected by western blotting and immunofluorescent staining in the proband. Immunofluorescent staining of spermatozoa from fertile men showed that IQCN was located in the acrosomal region and translocated to the equatorial segment after the acrosome reaction. The proband spermatozoa had abnormal morphology and function. Finally, the proband couple underwent IVF with donor sperm and a healthy baby was born. Furthermore, we developed an Iqcn-KO mouse model using the CRISPR/Cas9 technique. Sperm quality, except for sperm motility, and the fertility of male Iqcn-/- mice were consistent with those of the proband. In conclusion, the findings in humans and mice demonstrate that the homozygous frameshift variant of IQCN causes male infertility owing to autosomal-recessive fertilization failure.
期刊介绍:
MHR publishes original research reports, commentaries and reviews on topics in the basic science of reproduction, including: reproductive tract physiology and pathology; gonad function and gametogenesis; fertilization; embryo development; implantation; and pregnancy and parturition. Irrespective of the study subject, research papers should have a mechanistic aspect.