Leveraging Contact Network Information in Clustered Randomized Studies of Contagion Processes.

Maxwell H Wang, Patrick Staples, Mélanie Prague, Ravi Goyal, Victor DeGruttola, Jukka-Pekka Onnela
{"title":"Leveraging Contact Network Information in Clustered Randomized Studies of Contagion Processes.","authors":"Maxwell H Wang, Patrick Staples, Mélanie Prague, Ravi Goyal, Victor DeGruttola, Jukka-Pekka Onnela","doi":"10.1353/obs.2023.0021","DOIUrl":null,"url":null,"abstract":"<p><p>In a randomized study, leveraging covariates related to the outcome (e.g. disease status) may produce less variable estimates of the effect of exposure. For contagion processes operating on a contact network, transmission can only occur through ties that connect affected and unaffected individuals; the outcome of such a process is known to depend intimately on the structure of the network. In this paper, we investigate the use of contact network features as efficiency covariates in exposure effect estimation. Using augmented generalized estimating equations (GEE), we estimate how gains in efficiency depend on the network structure and spread of the contagious agent or behavior. We apply this approach to simulated randomized trials using a stochastic compartmental contagion model on a collection of model-based contact networks and compare the bias, power, and variance of the estimated exposure effects using an assortment of network covariate adjustment strategies. We also demonstrate the use of network-augmented GEEs on a clustered randomized trial evaluating the effects of wastewater monitoring on COVID-19 cases in residential buildings at the the University of California San Diego.</p>","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270696/pdf/nihms-1870046.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2023.0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a randomized study, leveraging covariates related to the outcome (e.g. disease status) may produce less variable estimates of the effect of exposure. For contagion processes operating on a contact network, transmission can only occur through ties that connect affected and unaffected individuals; the outcome of such a process is known to depend intimately on the structure of the network. In this paper, we investigate the use of contact network features as efficiency covariates in exposure effect estimation. Using augmented generalized estimating equations (GEE), we estimate how gains in efficiency depend on the network structure and spread of the contagious agent or behavior. We apply this approach to simulated randomized trials using a stochastic compartmental contagion model on a collection of model-based contact networks and compare the bias, power, and variance of the estimated exposure effects using an assortment of network covariate adjustment strategies. We also demonstrate the use of network-augmented GEEs on a clustered randomized trial evaluating the effects of wastewater monitoring on COVID-19 cases in residential buildings at the the University of California San Diego.

在传染过程的聚类随机研究中利用接触网络信息
在随机研究中,利用与结果相关的协变量(如疾病状态)可能会减少对暴露影响的估计值的变化。对于在接触网络上运行的传染过程,传播只能通过连接受影响个体和未受影响个体的纽带发生;众所周知,这种过程的结果与网络结构密切相关。在本文中,我们研究了在暴露效应估计中使用接触网络特征作为效率协变量的问题。通过使用增强型广义估计方程(GEE),我们估算了效率收益如何取决于网络结构以及传染性病原体或行为的传播。我们将这种方法应用于在一系列基于模型的接触网络上使用随机分区传染模型进行的模拟随机试验,并比较了使用各种网络协变量调整策略估算的暴露效果的偏差、功率和方差。我们还在加州大学圣地亚哥分校的一项聚类随机试验中演示了网络增强 GEE 的使用,该试验评估了废水监测对住宅楼 COVID-19 病例的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信