Mengjia Wu, Yi Zhang, Mark Markley, Caitlin Cassidy, Nils Newman, Alan Porter
{"title":"COVID-19 knowledge deconstruction and retrieval: an intelligent bibliometric solution.","authors":"Mengjia Wu, Yi Zhang, Mark Markley, Caitlin Cassidy, Nils Newman, Alan Porter","doi":"10.1007/s11192-023-04747-w","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 has been an unprecedented challenge that disruptively reshaped societies and brought a massive amount of novel knowledge to the scientific community. However, as this knowledge flood continues surging, researchers have been disadvantaged by not having access to a platform that can quickly synthesize emerging information and link the new knowledge to the latent knowledge foundation. Aiming to fill this gap, we propose a research framework and develop a dashboard that can assist scientists in identifying, retrieving, and understanding COVID-19 knowledge from the ocean of scholarly articles. Incorporating principal component decomposition (PCD), a knowledge mode-based search approach, and hierarchical topic tree (HTT) analysis, the proposed framework profiles the COVID-19 research landscape, retrieves topic-specific latent knowledge foundation, and visualizes knowledge structures. The regularly updated dashboard presents our research results. Addressing 127,971 COVID-19 research papers from PubMed, the PCD topic analysis identifies 35 research hotspots, along with their inner correlations and fluctuating trends. The HTT result segments the global knowledge landscape of COVID-19 into clinical and public health branches and reveals the deeper exploration of those studies. To supplement this analysis, we additionally built a knowledge model from research papers on the topic of vaccination and fetched 92,286 pre-Covid publications as the latent knowledge foundation for reference. The HTT analysis results on the retrieved papers show multiple relevant biomedical disciplines and four future research topics: monoclonal antibody treatments, vaccinations in diabetic patients, vaccine immunity effectiveness and durability, and vaccination-related allergic sensitization.</p>","PeriodicalId":21755,"journal":{"name":"Scientometrics","volume":" ","pages":"1-31"},"PeriodicalIF":3.5000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10230150/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientometrics","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s11192-023-04747-w","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3
Abstract
COVID-19 has been an unprecedented challenge that disruptively reshaped societies and brought a massive amount of novel knowledge to the scientific community. However, as this knowledge flood continues surging, researchers have been disadvantaged by not having access to a platform that can quickly synthesize emerging information and link the new knowledge to the latent knowledge foundation. Aiming to fill this gap, we propose a research framework and develop a dashboard that can assist scientists in identifying, retrieving, and understanding COVID-19 knowledge from the ocean of scholarly articles. Incorporating principal component decomposition (PCD), a knowledge mode-based search approach, and hierarchical topic tree (HTT) analysis, the proposed framework profiles the COVID-19 research landscape, retrieves topic-specific latent knowledge foundation, and visualizes knowledge structures. The regularly updated dashboard presents our research results. Addressing 127,971 COVID-19 research papers from PubMed, the PCD topic analysis identifies 35 research hotspots, along with their inner correlations and fluctuating trends. The HTT result segments the global knowledge landscape of COVID-19 into clinical and public health branches and reveals the deeper exploration of those studies. To supplement this analysis, we additionally built a knowledge model from research papers on the topic of vaccination and fetched 92,286 pre-Covid publications as the latent knowledge foundation for reference. The HTT analysis results on the retrieved papers show multiple relevant biomedical disciplines and four future research topics: monoclonal antibody treatments, vaccinations in diabetic patients, vaccine immunity effectiveness and durability, and vaccination-related allergic sensitization.
期刊介绍:
Scientometrics aims at publishing original studies, short communications, preliminary reports, review papers, letters to the editor and book reviews on scientometrics. The topics covered are results of research concerned with the quantitative features and characteristics of science. Emphasis is placed on investigations in which the development and mechanism of science are studied by means of (statistical) mathematical methods.
The Journal also provides the reader with important up-to-date information about international meetings and events in scientometrics and related fields. Appropriate bibliographic compilations are published as a separate section. Due to its fully interdisciplinary character, Scientometrics is indispensable to research workers and research administrators throughout the world. It provides valuable assistance to librarians and documentalists in central scientific agencies, ministries, research institutes and laboratories.
Scientometrics includes the Journal of Research Communication Studies. Consequently its aims and scope cover that of the latter, namely, to bring the results of research investigations together in one place, in such a form that they will be of use not only to the investigators themselves but also to the entrepreneurs and research workers who form the object of these studies.