L1/LDG Method for Caputo-Hadamard Time Fractional Diffusion Equation.

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Zhen Wang
{"title":"L1/LDG Method for Caputo-Hadamard Time Fractional Diffusion Equation.","authors":"Zhen Wang","doi":"10.1007/s42967-023-00257-x","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a class of discrete Gronwall inequalities is proposed. It is efficiently applied to analyzing the constructed L1/local discontinuous Galerkin (LDG) finite element methods which are used for numerically solving the Caputo-Hadamard time fractional diffusion equation. The derived numerical methods are shown to be <math><mi>α</mi></math>-robust using the newly established Gronwall inequalities, that is, it remains valid when <math><mrow><mi>α</mi><mo>→</mo><msup><mn>1</mn><mo>-</mo></msup></mrow></math>. Numerical experiments are given to demonstrate the theoretical statements.</p>","PeriodicalId":29916,"journal":{"name":"Communications on Applied Mathematics and Computation","volume":" ","pages":"1-25"},"PeriodicalIF":1.4000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088693/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42967-023-00257-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a class of discrete Gronwall inequalities is proposed. It is efficiently applied to analyzing the constructed L1/local discontinuous Galerkin (LDG) finite element methods which are used for numerically solving the Caputo-Hadamard time fractional diffusion equation. The derived numerical methods are shown to be α-robust using the newly established Gronwall inequalities, that is, it remains valid when α1-. Numerical experiments are given to demonstrate the theoretical statements.

Caputo-Hadamard时间分数阶扩散方程的L1/LDG方法。
本文提出了一类离散Gronwall不等式。它被有效地应用于分析用于数值求解Caputo-Hadamard时间分数阶扩散方程的构造的L1/局部不连续Galerkin(LDG)有限元方法。使用新建立的Gronwall不等式,所导出的数值方法被证明是α-鲁棒的,也就是说,当α→1-。数值实验证明了理论的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.20%
发文量
523
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信