{"title":"Policy evaluation during a pandemic","authors":"Brantly Callaway , Tong Li","doi":"10.1016/j.jeconom.2023.03.009","DOIUrl":null,"url":null,"abstract":"<div><p>National and local governments have implemented a large number of policies in response to the Covid-19 pandemic. Evaluating the effects of these policies, both on the number of Covid-19 cases as well as on other economic outcomes is a key ingredient for policymakers to be able to determine which policies are most effective as well as the relative costs and benefits of particular policies. In this paper, we consider the relative merits of common identification strategies that exploit variation in the timing of policies across different locations by checking whether the identification strategies are compatible with leading epidemic models in the epidemiology literature. We argue that unconfoundedness type approaches, that condition on the pre-treatment “state” of the pandemic, are likely to be more useful for evaluating policies than difference-in-differences type approaches due to the highly nonlinear spread of cases during a pandemic. For difference-in-differences, we further show that a version of this problem continues to exist even when one is interested in understanding the effect of a policy on other economic outcomes when those outcomes also depend on the number of Covid-19 cases. We propose alternative approaches that are able to circumvent these issues. We apply our proposed approach to study the effect of state level shelter-in-place orders early in the pandemic.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"236 1","pages":"Article 105454"},"PeriodicalIF":9.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276647/pdf/","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407623001483","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 9
Abstract
National and local governments have implemented a large number of policies in response to the Covid-19 pandemic. Evaluating the effects of these policies, both on the number of Covid-19 cases as well as on other economic outcomes is a key ingredient for policymakers to be able to determine which policies are most effective as well as the relative costs and benefits of particular policies. In this paper, we consider the relative merits of common identification strategies that exploit variation in the timing of policies across different locations by checking whether the identification strategies are compatible with leading epidemic models in the epidemiology literature. We argue that unconfoundedness type approaches, that condition on the pre-treatment “state” of the pandemic, are likely to be more useful for evaluating policies than difference-in-differences type approaches due to the highly nonlinear spread of cases during a pandemic. For difference-in-differences, we further show that a version of this problem continues to exist even when one is interested in understanding the effect of a policy on other economic outcomes when those outcomes also depend on the number of Covid-19 cases. We propose alternative approaches that are able to circumvent these issues. We apply our proposed approach to study the effect of state level shelter-in-place orders early in the pandemic.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.