Policy evaluation during a pandemic

IF 9.9 3区 经济学 Q1 ECONOMICS
Brantly Callaway , Tong Li
{"title":"Policy evaluation during a pandemic","authors":"Brantly Callaway ,&nbsp;Tong Li","doi":"10.1016/j.jeconom.2023.03.009","DOIUrl":null,"url":null,"abstract":"<div><p>National and local governments have implemented a large number of policies in response to the Covid-19 pandemic. Evaluating the effects of these policies, both on the number of Covid-19 cases as well as on other economic outcomes is a key ingredient for policymakers to be able to determine which policies are most effective as well as the relative costs and benefits of particular policies. In this paper, we consider the relative merits of common identification strategies that exploit variation in the timing of policies across different locations by checking whether the identification strategies are compatible with leading epidemic models in the epidemiology literature. We argue that unconfoundedness type approaches, that condition on the pre-treatment “state” of the pandemic, are likely to be more useful for evaluating policies than difference-in-differences type approaches due to the highly nonlinear spread of cases during a pandemic. For difference-in-differences, we further show that a version of this problem continues to exist even when one is interested in understanding the effect of a policy on other economic outcomes when those outcomes also depend on the number of Covid-19 cases. We propose alternative approaches that are able to circumvent these issues. We apply our proposed approach to study the effect of state level shelter-in-place orders early in the pandemic.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"236 1","pages":"Article 105454"},"PeriodicalIF":9.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276647/pdf/","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407623001483","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 9

Abstract

National and local governments have implemented a large number of policies in response to the Covid-19 pandemic. Evaluating the effects of these policies, both on the number of Covid-19 cases as well as on other economic outcomes is a key ingredient for policymakers to be able to determine which policies are most effective as well as the relative costs and benefits of particular policies. In this paper, we consider the relative merits of common identification strategies that exploit variation in the timing of policies across different locations by checking whether the identification strategies are compatible with leading epidemic models in the epidemiology literature. We argue that unconfoundedness type approaches, that condition on the pre-treatment “state” of the pandemic, are likely to be more useful for evaluating policies than difference-in-differences type approaches due to the highly nonlinear spread of cases during a pandemic. For difference-in-differences, we further show that a version of this problem continues to exist even when one is interested in understanding the effect of a policy on other economic outcomes when those outcomes also depend on the number of Covid-19 cases. We propose alternative approaches that are able to circumvent these issues. We apply our proposed approach to study the effect of state level shelter-in-place orders early in the pandemic.

Abstract Image

Abstract Image

Abstract Image

大流行期间的政策评估
为应对新冠肺炎疫情,国家和地方政府实施了大量政策。评估这些政策对新冠肺炎病例数和其他经济结果的影响,是决策者能够确定哪些政策最有效以及特定政策的相对成本和收益的关键因素。在本文中,我们通过检查识别策略是否与流行病学文献中的主要流行病模型兼容,来考虑利用不同地区政策时间变化的常见识别策略的相对优点。我们认为,由于疫情期间病例的高度非线性传播,以疫情预处理“状态”为条件的无基础型方法可能比差异型方法更适用于评估政策。对于差异,我们进一步表明,即使人们有兴趣了解政策对其他经济结果的影响,这种问题的一个版本仍然存在,而这些结果也取决于新冠肺炎病例数。我们提出了能够规避这些问题的替代办法。我们将我们提出的方法应用于研究疫情早期州一级避难所订单的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信