Blockchain-enabled healthcare monitoring system for early Monkeypox detection.

IF 2.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Aditya Gupta, Monu Bhagat, Vibha Jain
{"title":"Blockchain-enabled healthcare monitoring system for early Monkeypox detection.","authors":"Aditya Gupta,&nbsp;Monu Bhagat,&nbsp;Vibha Jain","doi":"10.1007/s11227-023-05288-y","DOIUrl":null,"url":null,"abstract":"<p><p>The recent emergence of monkeypox poses a life-threatening challenge to humans and has become one of the global health concerns after COVID-19. Currently, machine learning-based smart healthcare monitoring systems have demonstrated significant potential in image-based diagnosis including brain tumor identification and lung cancer diagnosis. In a similar fashion, the applications of machine learning can be utilized for the early identification of monkeypox cases. However, sharing critical health information with various actors such as patients, doctors, and other healthcare professionals in a secure manner remains a research challenge. Motivated by this fact, our paper presents a blockchain-enabled conceptual framework for the early detection and classification of monkeypox using transfer learning. The proposed framework is experimentally demonstrated in Python 3.9 using a monkeypox dataset of 1905 images obtained from the GitHub repository. To validate the effectiveness of the proposed model, various performance estimators, namely accuracy, recall, precision, and F1-score, are employed. The performance of different transfer learning models, namely Xception, VGG19, and VGG16, is compared against the presented methodology. Based on the comparison, it is evident that the proposed methodology effectively detects and classifies the monkeypox disease with a classification accuracy of 98.80%. In future, multiple skin diseases such as measles and chickenpox can be diagnosed using the proposed model on the skin lesion datasets.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":" ","pages":"1-25"},"PeriodicalIF":2.5000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10118230/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-023-05288-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 3

Abstract

The recent emergence of monkeypox poses a life-threatening challenge to humans and has become one of the global health concerns after COVID-19. Currently, machine learning-based smart healthcare monitoring systems have demonstrated significant potential in image-based diagnosis including brain tumor identification and lung cancer diagnosis. In a similar fashion, the applications of machine learning can be utilized for the early identification of monkeypox cases. However, sharing critical health information with various actors such as patients, doctors, and other healthcare professionals in a secure manner remains a research challenge. Motivated by this fact, our paper presents a blockchain-enabled conceptual framework for the early detection and classification of monkeypox using transfer learning. The proposed framework is experimentally demonstrated in Python 3.9 using a monkeypox dataset of 1905 images obtained from the GitHub repository. To validate the effectiveness of the proposed model, various performance estimators, namely accuracy, recall, precision, and F1-score, are employed. The performance of different transfer learning models, namely Xception, VGG19, and VGG16, is compared against the presented methodology. Based on the comparison, it is evident that the proposed methodology effectively detects and classifies the monkeypox disease with a classification accuracy of 98.80%. In future, multiple skin diseases such as measles and chickenpox can be diagnosed using the proposed model on the skin lesion datasets.

区块链医疗监测系统,用于早期猴痘检测。
最近出现的猴痘对人类构成了威胁生命的挑战,并已成为新冠肺炎后全球健康问题之一。目前,基于机器学习的智能医疗监测系统在基于图像的诊断(包括脑肿瘤识别和癌症诊断)中显示出巨大的潜力。以类似的方式,机器学习的应用可以用于猴痘病例的早期识别。然而,以安全的方式与患者、医生和其他医疗保健专业人员等各种参与者共享关键健康信息仍然是一项研究挑战。受此启发,我们的论文提出了一个基于区块链的概念框架,用于使用迁移学习对猴痘进行早期检测和分类。所提出的框架在Python 3.9中使用从GitHub存储库获得的1905幅图像的猴痘数据集进行了实验演示。为了验证所提出的模型的有效性,使用了各种性能估计量,即准确度、召回率、准确度和F1分数。将不同迁移学习模型(即Xception、VGG19和VGG16)的性能与所提出的方法进行比较。基于比较,很明显,所提出的方法有效地检测和分类了猴痘疾病,分类准确率为98.80%。未来,使用所提出的模型,可以在皮肤病变数据集上诊断麻疹和水痘等多种皮肤病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Supercomputing
Journal of Supercomputing 工程技术-工程:电子与电气
CiteScore
6.30
自引率
12.10%
发文量
734
审稿时长
13 months
期刊介绍: The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs. Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信