{"title":"Developing an LSTM Model to Identify Surgical Site Infections using Electronic Healthcare Records.","authors":"Amber C Kiser, Karen Eilbeck, Brian T Bucher","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, hospitals and healthcare providers have made efforts to reduce surgical site infections as they are a major cause of surgical complications, a prominent reason for hospital readmission, and associated with significantly increased healthcare costs. Traditional surveillance methods for SSI rely on manual chart review, which can be laborious and costly. To assist the chart review process, we developed a long short-term memory (LSTM) model using structured electronic health record data to identify SSI. The top LSTM model resulted in an average precision (AP) of 0.570 [95% CI 0.567, 0.573] and area under the receiver operating characteristic curve (AUROC) of 0.905 [95% CI 0.904, 0.906] compared to the top traditional machine learning model, a random forest, which achieved 0.552 [95% CI 0.549, 0.555] AP and 0.899 [95% CI 0.898, 0.900] AUROC. Our LSTM model represents a step toward automated surveillance of SSIs, a critical component of quality improvement mechanisms.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2023 ","pages":"330-339"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283140/pdf/2161.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, hospitals and healthcare providers have made efforts to reduce surgical site infections as they are a major cause of surgical complications, a prominent reason for hospital readmission, and associated with significantly increased healthcare costs. Traditional surveillance methods for SSI rely on manual chart review, which can be laborious and costly. To assist the chart review process, we developed a long short-term memory (LSTM) model using structured electronic health record data to identify SSI. The top LSTM model resulted in an average precision (AP) of 0.570 [95% CI 0.567, 0.573] and area under the receiver operating characteristic curve (AUROC) of 0.905 [95% CI 0.904, 0.906] compared to the top traditional machine learning model, a random forest, which achieved 0.552 [95% CI 0.549, 0.555] AP and 0.899 [95% CI 0.898, 0.900] AUROC. Our LSTM model represents a step toward automated surveillance of SSIs, a critical component of quality improvement mechanisms.