Timeline Registration for Electronic Health Records.

Shiyi Jiang, Rungang Han, Krishnendu Chakrabarty, David Page, William W Stead, Anru R Zhang
{"title":"Timeline Registration for Electronic Health Records.","authors":"Shiyi Jiang, Rungang Han, Krishnendu Chakrabarty, David Page, William W Stead, Anru R Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic Health Record (EHR) data are captured over time as patients receive care. Accordingly, variations among patients, such as when a patient presents for care during the course of a disease, introduce bias into standard longitudinal EHR data analysis methods. We, therefore, aim to provide an alignment method that reduces this bias. We structure this task as a registration problem. While limited prior research on longitudinal EHR data considered registration, we propose a robust registration method to provide better data alignment by estimating the optimum time shift at each time point. We validate the proposed method for mortality prediction. We utilize a Recurrent Neural Network (RNN), time-varying Cox regression model, and Logistic Regression (LR) for mortality prediction. Results suggest our proposed registration method enhances mortality prediction with at least a 1-2% increase in major evaluation metrics utilized.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283114/pdf/2036.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic Health Record (EHR) data are captured over time as patients receive care. Accordingly, variations among patients, such as when a patient presents for care during the course of a disease, introduce bias into standard longitudinal EHR data analysis methods. We, therefore, aim to provide an alignment method that reduces this bias. We structure this task as a registration problem. While limited prior research on longitudinal EHR data considered registration, we propose a robust registration method to provide better data alignment by estimating the optimum time shift at each time point. We validate the proposed method for mortality prediction. We utilize a Recurrent Neural Network (RNN), time-varying Cox regression model, and Logistic Regression (LR) for mortality prediction. Results suggest our proposed registration method enhances mortality prediction with at least a 1-2% increase in major evaluation metrics utilized.

电子健康记录注册时间表。
电子健康记录(EHR)数据是在患者接受治疗的过程中不断采集的。因此,患者之间的差异,如患者在疾病过程中何时就诊,会给标准的纵向电子病历数据分析方法带来偏差。因此,我们的目标是提供一种能减少这种偏差的对齐方法。我们将这一任务结构化为一个登记问题。虽然之前关于纵向电子病历数据的研究很少考虑登记问题,但我们提出了一种稳健的登记方法,通过估计每个时间点的最佳时间偏移来提供更好的数据配准。我们在死亡率预测中验证了所提出的方法。我们利用循环神经网络(RNN)、时变考克斯回归模型和逻辑回归(LR)进行死亡率预测。结果表明,我们提出的登记方法提高了死亡率预测能力,在主要评估指标上至少提高了 1-2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信