Multichannel EEG brain activity pattern analysis in time–frequency domain with nonnegative matrix factorization support

Tomasz M. Rutkowski , Rafal Zdunek , Andrzej Cichocki
{"title":"Multichannel EEG brain activity pattern analysis in time–frequency domain with nonnegative matrix factorization support","authors":"Tomasz M. Rutkowski ,&nbsp;Rafal Zdunek ,&nbsp;Andrzej Cichocki","doi":"10.1016/j.ics.2006.11.013","DOIUrl":null,"url":null,"abstract":"<div><p>A novel approach combining a time–frequency representation of brain activity in the form of recorded EEG signals together with nonnegative matrix factorization (NMF) post-processing section in brain computer interface<span> (BCI) training paradigm is presented. Such a combination of two emerging signal analysis techniques enables us to find and enhance very small oscillations related to presented visual stimuli. Presented results confirm validity of the chosen approach.</span></p></div>","PeriodicalId":84918,"journal":{"name":"International congress series","volume":"1301 ","pages":"Pages 266-269"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ics.2006.11.013","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International congress series","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0531513106006388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

A novel approach combining a time–frequency representation of brain activity in the form of recorded EEG signals together with nonnegative matrix factorization (NMF) post-processing section in brain computer interface (BCI) training paradigm is presented. Such a combination of two emerging signal analysis techniques enables us to find and enhance very small oscillations related to presented visual stimuli. Presented results confirm validity of the chosen approach.

支持非负矩阵分解的时频域多通道脑电活动模式分析
提出了一种脑机接口(BCI)训练范式中脑活动的时频表征与非负矩阵分解(NMF)后处理相结合的新方法。这种两种新兴信号分析技术的结合使我们能够发现并增强与呈现的视觉刺激相关的非常小的振荡。给出的结果证实了所选方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信