Centre assessment grades in 2020: a natural experiment for investigating bias in teacher judgements.

IF 2 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS
Louis Magowan
{"title":"Centre assessment grades in 2020: a natural experiment for investigating bias in teacher judgements.","authors":"Louis Magowan","doi":"10.1007/s42001-023-00206-x","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic meant that, in 2020, students in England were unable to sit their examinations and instead received predicted grades, or \"centre assessment grades\" (CAGs), from their teachers to allow them to progress. Using the Grading and Admissions Data for England (GRADE) dataset for students from 2018 to 2020, this study treats the use of CAGs as a natural experiment for causally understanding how teacher judgements of academic ability may be biased according to the demographic and socio-economic characteristics of their students. A variety of machine learning models were trained on the 2018-19 data and then used to generate predictions for what the 2020 students were likely to have received had their examinations taken place as usual. The differences between these predictions and the CAGs that students received were calculated and then averaged across students' different characteristics, revealing what the treatment effects of the use of CAGs were likely to have been for different types of students. No evidence of absolute negative bias against students of any demographic or socio-economic characteristic was found, with all groups of students having received higher CAGs than the grades they were likely to have received had they sat their examinations. Some evidence for relative bias was found, with consistent, but insubstantial differences being observed in the treatment effects of certain groups. However, when higher-order interactions of student characteristics were considered, these differences became more substantial. Intersectional perspectives which emphasise interactions and sub-group differences should be used more widely within quantitative educational equalities research.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Social Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42001-023-00206-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic meant that, in 2020, students in England were unable to sit their examinations and instead received predicted grades, or "centre assessment grades" (CAGs), from their teachers to allow them to progress. Using the Grading and Admissions Data for England (GRADE) dataset for students from 2018 to 2020, this study treats the use of CAGs as a natural experiment for causally understanding how teacher judgements of academic ability may be biased according to the demographic and socio-economic characteristics of their students. A variety of machine learning models were trained on the 2018-19 data and then used to generate predictions for what the 2020 students were likely to have received had their examinations taken place as usual. The differences between these predictions and the CAGs that students received were calculated and then averaged across students' different characteristics, revealing what the treatment effects of the use of CAGs were likely to have been for different types of students. No evidence of absolute negative bias against students of any demographic or socio-economic characteristic was found, with all groups of students having received higher CAGs than the grades they were likely to have received had they sat their examinations. Some evidence for relative bias was found, with consistent, but insubstantial differences being observed in the treatment effects of certain groups. However, when higher-order interactions of student characteristics were considered, these differences became more substantial. Intersectional perspectives which emphasise interactions and sub-group differences should be used more widely within quantitative educational equalities research.

Abstract Image

Abstract Image

Abstract Image

2020年中心评估成绩:调查教师判断中的偏见的自然实验。
新冠肺炎大流行意味着,2020年,英格兰的学生无法参加考试,而是从老师那里获得了预测成绩或“中心评估成绩”(CAG),以使他们取得进步。本研究使用2018年至2020年英国学生的评分和录取数据(GRADE)数据集,将CAG的使用视为一项自然实验,以因果地理解教师对学术能力的判断如何根据学生的人口统计和社会经济特征而产生偏差。根据2018-19年的数据训练了各种机器学习模型,然后用于预测2020年学生在照常考试的情况下可能会得到什么。计算这些预测与学生获得的CAG之间的差异,然后根据学生的不同特征进行平均,揭示了使用CAG对不同类型学生的治疗效果。没有发现任何证据表明对任何人口统计学或社会经济特征的学生存在绝对的负面偏见,所有学生群体的CAG都高于他们参加考试时可能获得的成绩。发现了一些相对偏倚的证据,在某些组的治疗效果上观察到了一致但没有实质性的差异。然而,当考虑到学生特征的高阶相互作用时,这些差异变得更加显著。强调互动和亚群体差异的跨部门视角应在定量教育平等研究中得到更广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Social Science
Journal of Computational Social Science SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
6.20
自引率
6.20%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信