Ripu Daman Singh, Surabhi Gumber, R C Sundriyal, Jeet Ram, Surendra P Singh
{"title":"Chir pine forest and pre-monsoon drought determine spatial, and temporal patterns of forest fires in Uttarakhand Himalaya.","authors":"Ripu Daman Singh, Surabhi Gumber, R C Sundriyal, Jeet Ram, Surendra P Singh","doi":"10.1007/s42965-023-00306-9","DOIUrl":null,"url":null,"abstract":"<p><p>Associated with farming practices (between 300 and 2000 m elevations), human-ignited small, and patchy surface forest fires occur almost every year in Uttarakhand (between 28°43`- 31°27` N and 77°34`- 81°02`E; area 51,125 km<sup>2</sup>), a Himalayan state of India. Using fire incidence data of 19 years (2002-2020) generated by MODIS, we analysed the factors which drive temporal and spatial patterns of fire in the region. The fire incidence data were organized by 24 forest divisions, the unit of state forest management and administration. The standardized regression model showed that pre-monsoon temperature (March to May or mid-June), proportional area of the forest division under chir pine (<i>Pinus roxburghii</i>) forest (positive effect), and pre-monsoon and winter precipitation (negative effect) accounted for 56% of the variance in fire incidence density (FID). The pre-monsoon temperature (warmer) and precipitation (lower) were significantly different in 2009, 2012, 2016 and 2019, the years with high FID (average 54.9 fire/100 km<sup>2</sup>) than the rest of years with low FID (average 20.9 fire/100 km<sup>2</sup>). During the two decades of warming, high FID (> 30 incidence per year /100 km<sup>2</sup>) occurred after every three to four years, and fire peaks tended to increase with time. The study suggests that effective fire management can be attained by improving pre-monsoon precipitation forecasting and targeting forest compartments with a higher occurrence of chir pine and fire-vulnerable oaks. Furthermore, since fires are human-ignited, periodical analysis of changes in population distribution and communities' dependence on forests would need to be conducted.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42965-023-00306-9.</p>","PeriodicalId":54410,"journal":{"name":"Tropical Ecology","volume":" ","pages":"1-11"},"PeriodicalIF":1.1000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240464/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42965-023-00306-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Associated with farming practices (between 300 and 2000 m elevations), human-ignited small, and patchy surface forest fires occur almost every year in Uttarakhand (between 28°43`- 31°27` N and 77°34`- 81°02`E; area 51,125 km2), a Himalayan state of India. Using fire incidence data of 19 years (2002-2020) generated by MODIS, we analysed the factors which drive temporal and spatial patterns of fire in the region. The fire incidence data were organized by 24 forest divisions, the unit of state forest management and administration. The standardized regression model showed that pre-monsoon temperature (March to May or mid-June), proportional area of the forest division under chir pine (Pinus roxburghii) forest (positive effect), and pre-monsoon and winter precipitation (negative effect) accounted for 56% of the variance in fire incidence density (FID). The pre-monsoon temperature (warmer) and precipitation (lower) were significantly different in 2009, 2012, 2016 and 2019, the years with high FID (average 54.9 fire/100 km2) than the rest of years with low FID (average 20.9 fire/100 km2). During the two decades of warming, high FID (> 30 incidence per year /100 km2) occurred after every three to four years, and fire peaks tended to increase with time. The study suggests that effective fire management can be attained by improving pre-monsoon precipitation forecasting and targeting forest compartments with a higher occurrence of chir pine and fire-vulnerable oaks. Furthermore, since fires are human-ignited, periodical analysis of changes in population distribution and communities' dependence on forests would need to be conducted.
Supplementary information: The online version contains supplementary material available at 10.1007/s42965-023-00306-9.
期刊介绍:
Tropical Ecology is devoted to all aspects of fundamental and applied ecological research in tropical and sub-tropical ecosystems. Nevertheless, the cutting-edge research in new ecological concepts, methodology and reviews on contemporary themes, not necessarily confined to tropics and sub-tropics, may also be considered for publication at the discretion of the Editor-in-Chief. Areas of current interest include: Biological diversity and its management; Conservation and restoration ecology; Human ecology; Ecological economics; Ecosystem structure and functioning; Ecosystem services; Ecosystem sustainability; Stress and disturbance ecology; Ecology of global change; Ecological modeling; Evolutionary ecology; Quantitative ecology; and Social ecology.
The Journal Tropical Ecology features a distinguished editorial board, working on various ecological aspects of tropical and sub-tropical systems from diverse continents.
Tropical Ecology publishes:
· Original research papers
· Short communications
· Reviews and Mini-reviews on topical themes
· Scientific correspondence
· Book Reviews