Establishing the Median Infectious Dose and Characterizing the Clinical Manifestations of Mouse, Rat, Cow, and Human Corynebacterium bovis Isolates in Select Immunocompromised Mouse Strains.
Gerardo Mendoza, Christopher Cheleuitte-Nieves, Kvin Lertpiriyapong, Juliette Rk Wipf, Rodolfo Ricart J Arbona, Ileana C Miranda, Neil S Lipman
{"title":"Establishing the Median Infectious Dose and Characterizing the Clinical Manifestations of Mouse, Rat, Cow, and Human <i>Corynebacterium bovis</i> Isolates in Select Immunocompromised Mouse Strains.","authors":"Gerardo Mendoza, Christopher Cheleuitte-Nieves, Kvin Lertpiriyapong, Juliette Rk Wipf, Rodolfo Ricart J Arbona, Ileana C Miranda, Neil S Lipman","doi":"10.30802/AALAS-CM-22-000115","DOIUrl":null,"url":null,"abstract":"<p><p><i>Corynebacterium bovis</i> (Cb), the cause of hyperkeratotic dermatitis in various immunocompromised mouse strains, significantly impacts research outcomes if infected mice are used. Although Cb has been isolated from a variety of species, including mice, rats, cows, and humans, little is known about the differences in the infectivity and clinical disease that are associated with specific Cb isolates. The infectious dose that colonized 50% of the exposed population (ID<sub>50</sub> ) and any associated clinical disease was determined in athymic nude mice (Hsd:Athymic Nude-Foxn1 nu ) inoculated with Cb isolates collected from mice (<i>n</i> = 5), rat (<i>n</i> = 1), cow (<i>n</i> = 1), and humans (<i>n</i> = 2) The same parameters were also determined for 2 of the mouse isolates in 2 furred immunocompromised mouse strains (NSG [NOD. Cg-Prkdc<sup>scid</sup> Il2rg<sup>tm1Wjl</sup> /Sz] and NSG-S [NOD. Cg-Prkdc<sup>scid</sup> Il2rgt<sup>m1Wjl</sup> Tg(CMV-IL3, CSF2, KITLG)1Eav/MloySzJ]). To determine the ID <sub>50</sub>, mice (<i>n</i>= 6/dose; 3 of each sex) were inoculated topically in 10-fold increments ranging from 1 to 10 8 bacteria. Mice were scored daily for 14 days for the severity of clinical signs. On days 7 and 14 after inoculation, buccal and dorsal skin swabs were evaluated by aerobic culture to determine infection status. The mouse isolates yielded lower ID<sub>50</sub>values (58 to 1000 bacteria) than did the bovine (6460 to 7498 bacteria) and rat (10,000 bacteria) isolates. Human isolates did not colonize mice or cause disease. Mouse isolates produced clinical disease of vary- ing severity in nude mice. Despite significant immunodeficiency, furred NSG and NSG-S mice required a 1000- to 3000-fold higher inoculum for colonization than did athymic nude mice. Once colonized, clinically detectable hyperkeratosis did not develop in the haired strains until 18 to 22 d after inoculation, whereas athymic nude mice that developed clinically detect- able disease showed hyperkeratosis between 6 and 14 d after inoculation. In conclusion, there are significant differences in Cb's ID <sub>50</sub>, disease course, and severity of clinical signs between Cb isolates and among immunodeficient mouse strains.</p>","PeriodicalId":10659,"journal":{"name":"Comparative medicine","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.30802/AALAS-CM-22-000115","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Corynebacterium bovis (Cb), the cause of hyperkeratotic dermatitis in various immunocompromised mouse strains, significantly impacts research outcomes if infected mice are used. Although Cb has been isolated from a variety of species, including mice, rats, cows, and humans, little is known about the differences in the infectivity and clinical disease that are associated with specific Cb isolates. The infectious dose that colonized 50% of the exposed population (ID50 ) and any associated clinical disease was determined in athymic nude mice (Hsd:Athymic Nude-Foxn1 nu ) inoculated with Cb isolates collected from mice (n = 5), rat (n = 1), cow (n = 1), and humans (n = 2) The same parameters were also determined for 2 of the mouse isolates in 2 furred immunocompromised mouse strains (NSG [NOD. Cg-Prkdcscid Il2rgtm1Wjl /Sz] and NSG-S [NOD. Cg-Prkdcscid Il2rgtm1Wjl Tg(CMV-IL3, CSF2, KITLG)1Eav/MloySzJ]). To determine the ID 50, mice (n= 6/dose; 3 of each sex) were inoculated topically in 10-fold increments ranging from 1 to 10 8 bacteria. Mice were scored daily for 14 days for the severity of clinical signs. On days 7 and 14 after inoculation, buccal and dorsal skin swabs were evaluated by aerobic culture to determine infection status. The mouse isolates yielded lower ID50values (58 to 1000 bacteria) than did the bovine (6460 to 7498 bacteria) and rat (10,000 bacteria) isolates. Human isolates did not colonize mice or cause disease. Mouse isolates produced clinical disease of vary- ing severity in nude mice. Despite significant immunodeficiency, furred NSG and NSG-S mice required a 1000- to 3000-fold higher inoculum for colonization than did athymic nude mice. Once colonized, clinically detectable hyperkeratosis did not develop in the haired strains until 18 to 22 d after inoculation, whereas athymic nude mice that developed clinically detect- able disease showed hyperkeratosis between 6 and 14 d after inoculation. In conclusion, there are significant differences in Cb's ID 50, disease course, and severity of clinical signs between Cb isolates and among immunodeficient mouse strains.
期刊介绍:
Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.