{"title":"TNFAIP3 is anti-inflammatory in the retinal vasculature.","authors":"Li Liu, Youde Jiang, Jena J Steinle","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To determine whether tumor necrosis factor alpha-induced protein 3 (TNFAIP3) regulates inflammatory and permeability proteins in the retinal vasculature.</p><p><strong>Methods: </strong>We used retinal lysates from type 1 diabetic mice and endothelial cell-specific exchange protein for cAMP 1 (Epac1) knockout mice to determine the protein levels of TNFAIP3. We also treated retinal endothelial cells (RECs) in normal (5 mM) and high (25 mM) glucose with an Epac1 agonist or with TNFAIP3 siRNA. We performed western blotting for TNFAIP3 and inflammatory and permeability proteins after treatment. TNFAIP3 siRNA was used only in cells grown in high glucose. Immunostaining was performed for localization of ZO-1 and tight junction protein 1.</p><p><strong>Results: </strong>TNFAIP3 was reduced in the diabetic retinas and the retinas of the Epac1 conditional knockout mice. The Epac1 agonist increased TNFAIP3 levels in RECs grown in high glucose. Reduction of TNFAIP3 with siRNA led to increased levels of tumor necrosis factor alpha (TNFα) and phosphorylation of nuclear factor kappa beta (NF-kB), while decreasing occludin and zonula occludens 1 (ZO-1) protein levels and inhibitory kappa beta kinase (IkB) phosphorylation. Tumor receptor-associated factor 6 (TRAF6) levels were increased above high glucose levels.</p><p><strong>Conclusions: </strong>TNFAIP3 serves as an anti-inflammatory factor in the retinal vasculature. Epac1 regulates TNFAIP3. TNFAIP3 may offer a new mechanism for regulating inflammation and permeability in the retinal vasculature.</p>","PeriodicalId":18866,"journal":{"name":"Molecular Vision","volume":"28 ","pages":"124-129"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/62/f6/mv-v28-124.PMC9352365.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Vision","FirstCategoryId":"3","ListUrlMain":"","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To determine whether tumor necrosis factor alpha-induced protein 3 (TNFAIP3) regulates inflammatory and permeability proteins in the retinal vasculature.
Methods: We used retinal lysates from type 1 diabetic mice and endothelial cell-specific exchange protein for cAMP 1 (Epac1) knockout mice to determine the protein levels of TNFAIP3. We also treated retinal endothelial cells (RECs) in normal (5 mM) and high (25 mM) glucose with an Epac1 agonist or with TNFAIP3 siRNA. We performed western blotting for TNFAIP3 and inflammatory and permeability proteins after treatment. TNFAIP3 siRNA was used only in cells grown in high glucose. Immunostaining was performed for localization of ZO-1 and tight junction protein 1.
Results: TNFAIP3 was reduced in the diabetic retinas and the retinas of the Epac1 conditional knockout mice. The Epac1 agonist increased TNFAIP3 levels in RECs grown in high glucose. Reduction of TNFAIP3 with siRNA led to increased levels of tumor necrosis factor alpha (TNFα) and phosphorylation of nuclear factor kappa beta (NF-kB), while decreasing occludin and zonula occludens 1 (ZO-1) protein levels and inhibitory kappa beta kinase (IkB) phosphorylation. Tumor receptor-associated factor 6 (TRAF6) levels were increased above high glucose levels.
Conclusions: TNFAIP3 serves as an anti-inflammatory factor in the retinal vasculature. Epac1 regulates TNFAIP3. TNFAIP3 may offer a new mechanism for regulating inflammation and permeability in the retinal vasculature.
期刊介绍:
Molecular Vision is a peer-reviewed journal dedicated to the dissemination of research results in molecular biology, cell biology, and the genetics of the visual system (ocular and cortical).
Molecular Vision publishes articles presenting original research that has not previously been published and comprehensive articles reviewing the current status of a particular field or topic. Submissions to Molecular Vision are subjected to rigorous peer review. Molecular Vision does NOT publish preprints.
For authors, Molecular Vision provides a rapid means of communicating important results. Access to Molecular Vision is free and unrestricted, allowing the widest possible audience for your article. Digital publishing allows you to use color images freely (and without fees). Additionally, you may publish animations, sounds, or other supplementary information that clarifies or supports your article. Each of the authors of an article may also list an electronic mail address (which will be updated upon request) to give interested readers easy access to authors.