Sparse Identification and Estimation of Large-Scale Vector AutoRegressive Moving Averages.

IF 3 1区 数学 Q1 STATISTICS & PROBABILITY
Ines Wilms, Sumanta Basu, Jacob Bien, David S Matteson
{"title":"Sparse Identification and Estimation of Large-Scale Vector AutoRegressive Moving Averages.","authors":"Ines Wilms, Sumanta Basu, Jacob Bien, David S Matteson","doi":"10.1080/01621459.2021.1942013","DOIUrl":null,"url":null,"abstract":"<p><p>The Vector AutoRegressive Moving Average (VARMA) model is fundamental to the theory of multivariate time series; however, identifiability issues have led practitioners to abandon it in favor of the simpler but more restrictive Vector AutoRegressive (VAR) model. We narrow this gap with a new optimization-based approach to VARMA identification built upon the principle of parsimony. Among all equivalent data-generating models, we use convex optimization to seek the parameterization that is simplest in a certain sense. A user-specified strongly convex penalty is used to measure model simplicity, and that same penalty is then used to define an estimator that can be efficiently computed. We establish consistency of our estimators in a double-asymptotic regime. Our non-asymptotic error bound analysis accommodates both model specification and parameter estimation steps, a feature that is crucial for studying large-scale VARMA algorithms. Our analysis also provides new results on penalized estimation of infinite-order VAR, and elastic net regression under a singular covariance structure of regressors, which may be of independent interest. We illustrate the advantage of our method over VAR alternatives on three real data examples.</p>","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"118 541","pages":"571-582"},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01621459.2021.1942013","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Statistical Association","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01621459.2021.1942013","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 12

Abstract

The Vector AutoRegressive Moving Average (VARMA) model is fundamental to the theory of multivariate time series; however, identifiability issues have led practitioners to abandon it in favor of the simpler but more restrictive Vector AutoRegressive (VAR) model. We narrow this gap with a new optimization-based approach to VARMA identification built upon the principle of parsimony. Among all equivalent data-generating models, we use convex optimization to seek the parameterization that is simplest in a certain sense. A user-specified strongly convex penalty is used to measure model simplicity, and that same penalty is then used to define an estimator that can be efficiently computed. We establish consistency of our estimators in a double-asymptotic regime. Our non-asymptotic error bound analysis accommodates both model specification and parameter estimation steps, a feature that is crucial for studying large-scale VARMA algorithms. Our analysis also provides new results on penalized estimation of infinite-order VAR, and elastic net regression under a singular covariance structure of regressors, which may be of independent interest. We illustrate the advantage of our method over VAR alternatives on three real data examples.

大规模向量自回归移动平均值的稀疏识别与估计
向量自回归移动平均(VARMA)模型是多元时间序列理论的基础;然而,可识别性问题导致从业人员放弃该模型,转而使用更简单但限制性更强的向量自回归(VAR)模型。我们根据简约原则,采用基于优化的新方法来识别 VARMA,从而缩小了这一差距。在所有等效的数据生成模型中,我们使用凸优化来寻求在一定意义上最简单的参数化。我们使用用户指定的强凸惩罚来衡量模型的简洁性,然后使用相同的惩罚来定义可高效计算的估计器。我们在双重渐近机制中建立了估计器的一致性。我们的非渐近误差边界分析同时考虑了模型规范和参数估计步骤,这一特点对于研究大规模 VARMA 算法至关重要。我们的分析还提供了关于无穷阶 VAR 惩罚估计和回归子奇异协方差结构下弹性净回归的新结果,这些结果可能会引起人们的兴趣。我们通过三个真实数据实例说明了我们的方法相对于其他 VAR 方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
8.10%
发文量
168
审稿时长
12 months
期刊介绍: Established in 1888 and published quarterly in March, June, September, and December, the Journal of the American Statistical Association ( JASA ) has long been considered the premier journal of statistical science. Articles focus on statistical applications, theory, and methods in economic, social, physical, engineering, and health sciences. Important books contributing to statistical advancement are reviewed in JASA . JASA is indexed in Current Index to Statistics and MathSci Online and reviewed in Mathematical Reviews. JASA is abstracted by Access Company and is indexed and abstracted in the SRM Database of Social Research Methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信