Self-Assembled Co3O4 Nanospheres on N-Doped Reduced Graphene Oxide (Co3O4/N-RGO) Bifunctional Electrocatalysts for Cathodic Reduction of CO2 and Anodic Oxidation of Organic Pollutants

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
G. Bharath*, K. Rambabu, Cyril Aubry, Mohammad Abu Haija*, Ashok Kumar Nadda, N. Ponpandian, Fawzi Banat*
{"title":"Self-Assembled Co3O4 Nanospheres on N-Doped Reduced Graphene Oxide (Co3O4/N-RGO) Bifunctional Electrocatalysts for Cathodic Reduction of CO2 and Anodic Oxidation of Organic Pollutants","authors":"G. Bharath*,&nbsp;K. Rambabu,&nbsp;Cyril Aubry,&nbsp;Mohammad Abu Haija*,&nbsp;Ashok Kumar Nadda,&nbsp;N. Ponpandian,&nbsp;Fawzi Banat*","doi":"10.1021/acsaem.1c02196","DOIUrl":null,"url":null,"abstract":"<p >The development of efficient and stable bifunctional electrocatalysts is extremely important and challenging, especially when it comes to simultaneous electroreduction of CO<sub>2</sub> (ECR CO<sub>2</sub>) and electro-oxidation of organic dyes. Herein, nanorods of Co<sub>3</sub>O<sub>4</sub> that self-assemble into Co<sub>3</sub>O<sub>4</sub> nanospheres were anchored on nitrogen-doped reduced graphene oxide (Co<sub>3</sub>O<sub>4</sub>/N-RGO) frameworks <i>via</i> a hydrothermal method. Thorough physicochemical analysis revealed the small-size crystallites, the inherence of the intersheet network, and the large specific surface area of the Co<sub>3</sub>O<sub>4</sub>/N-RGO nanocomposites. X-ray photoelectron spectroscopy analysis showed that the N-doped RGO could be involved in the electronic modification of Co atoms, resulting in more Co<sup>2+</sup> active species on the surface of the Co<sub>3</sub>O<sub>4</sub>/N-RGO nanocomposite. Electrochemical studies revealed that the Co<sub>3</sub>O<sub>4</sub>/N-RGO bifunctional electrocatalyst showed structural stability and low interface and charge transfer resistance than that of the Co<sub>3</sub>O<sub>4</sub> catalyst. It was found that paired Co<sub>3</sub>O<sub>4</sub>/N-RGO symmetric electrodes possessed an efficient cathodic reduction of CO<sub>2</sub> with 195 μmol/(L cm<sup>2</sup>) yield of CH<sub>3</sub>OH and faradic efficiency (FE) of 74.8% and an anodic degradation of methylene blue (MB) dye at ?0.7 V <i>versus</i> RHE (a reversible hydrogen electrode) in 1.0 M KOH alkaline solution over 60 min. A possible mechanism for bifunctional electrocatalytic reduction of CO<sub>2</sub> and oxidation of an MB dye is schematically demonstrated. The research study highlights the potential use of Co<sub>3</sub>O<sub>4</sub>/N-RGO as a bifunctional electrocatalyst in the reduction of atmospheric hazardous wastes and the production of value-added chemicals.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.1c02196","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15

Abstract

The development of efficient and stable bifunctional electrocatalysts is extremely important and challenging, especially when it comes to simultaneous electroreduction of CO2 (ECR CO2) and electro-oxidation of organic dyes. Herein, nanorods of Co3O4 that self-assemble into Co3O4 nanospheres were anchored on nitrogen-doped reduced graphene oxide (Co3O4/N-RGO) frameworks via a hydrothermal method. Thorough physicochemical analysis revealed the small-size crystallites, the inherence of the intersheet network, and the large specific surface area of the Co3O4/N-RGO nanocomposites. X-ray photoelectron spectroscopy analysis showed that the N-doped RGO could be involved in the electronic modification of Co atoms, resulting in more Co2+ active species on the surface of the Co3O4/N-RGO nanocomposite. Electrochemical studies revealed that the Co3O4/N-RGO bifunctional electrocatalyst showed structural stability and low interface and charge transfer resistance than that of the Co3O4 catalyst. It was found that paired Co3O4/N-RGO symmetric electrodes possessed an efficient cathodic reduction of CO2 with 195 μmol/(L cm2) yield of CH3OH and faradic efficiency (FE) of 74.8% and an anodic degradation of methylene blue (MB) dye at ?0.7 V versus RHE (a reversible hydrogen electrode) in 1.0 M KOH alkaline solution over 60 min. A possible mechanism for bifunctional electrocatalytic reduction of CO2 and oxidation of an MB dye is schematically demonstrated. The research study highlights the potential use of Co3O4/N-RGO as a bifunctional electrocatalyst in the reduction of atmospheric hazardous wastes and the production of value-added chemicals.

Abstract Image

自组装Co3O4纳米球在n掺杂还原氧化石墨烯(Co3O4/N-RGO)双功能电催化剂上的阴极还原CO2和阳极氧化有机污染物
开发高效、稳定的双功能电催化剂是非常重要和具有挑战性的,特别是在同时电还原CO2 (ECR CO2)和电氧化有机染料方面。本文通过水热法将自组装成Co3O4纳米球的Co3O4纳米棒固定在氮掺杂的还原氧化石墨烯(Co3O4/N-RGO)框架上。理化分析表明,Co3O4/N-RGO纳米复合材料具有小晶粒、片间网络和大比表面积的特点。x射线光电子能谱分析表明,n掺杂的RGO可以参与Co原子的电子修饰,导致Co3O4/N-RGO纳米复合材料表面有更多的Co2+活性物质。电化学研究表明,与Co3O4催化剂相比,Co3O4/N-RGO双功能电催化剂具有结构稳定性和较低的界面和电荷转移阻力。结果表明,Co3O4/N-RGO对称电极对CO2的阴极还原效率为195 μmol/(L cm2),相对于RHE(可逆氢电极),CH3OH产率为74.8%;在1.0 M KOH碱性溶液中,在- 0.7 V电压下,对亚甲基蓝(MB)染料的阳极降解时间为60 min。本文初步探讨了双功能电催化还原CO2和氧化MB染料的机理。该研究强调了Co3O4/N-RGO作为双功能电催化剂在减少大气危险废物和生产增值化学品方面的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信