{"title":"Salmonella enterica subsp. enterica serovar Typhimurium and Lactobacillus spp. interactions in vitro elicit improved antimicrobial production.","authors":"M A Nicdao, P C Ingalla, J Ingalla","doi":"10.47665/tb.40.1.006","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) is a global health crisis. Despite the drug discovery efforts, AMR is increasing, and discoveries are nearly nil. It is thus critical to design new strategies. Probiotics are tapped as alternatives to antibiotics for the treatment of gut-associated diseases. Lactobacillus species, common in food products, can inhibit the growth of gut pathogens. Here, we demonstrate the antimicrobial activities of Lactobacillus species - Lactobacillus paracasei, Lactobacillus casei, and Lactobacillus delbrueckii subsp. bulgaricus are enhanced when cocultured with Salmonella enterica subsp. enterica serovar Typhimurium. Cell-free culture supernatants (CFCS) from cocultures of Lactobacillus spp. and Salmonella enterica serovar Typhimurium more potently inhibit pathogen growth than their monoculture counterparts. Interestingly, we discovered that Salmonella enterica serovar Typhimurium could enhance the production of antimicrobials from Lactobacillus spp., most evident in L. delbrueckii subsp. bulgaricus. Also, L. delbrueckii subsp. bulgaricus CFCS upregulates key Salmonella virulence genes, hilA and sipA. Whether this increases Salmonella's pathogenicity in vivo or reduces pathogen fitness and growth inhibition in vitro warrants further investigation. We propose that these probiotic isolates may be utilized for innovative natural food processing and preservation strategies to control Salmonella food contaminations. Importantly, our findings that Salmonella elicits an enhanced antimicrobial activity from Lactobacillus spp. provide evidence of a pathogen-mediated elicitation of antimicrobial production. Therefore, extending this phenomenon to other microbial interactions may help augment the strategies for drug discovery.</p>","PeriodicalId":23476,"journal":{"name":"Tropical biomedicine","volume":"40 1","pages":"14-22"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.47665/tb.40.1.006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial resistance (AMR) is a global health crisis. Despite the drug discovery efforts, AMR is increasing, and discoveries are nearly nil. It is thus critical to design new strategies. Probiotics are tapped as alternatives to antibiotics for the treatment of gut-associated diseases. Lactobacillus species, common in food products, can inhibit the growth of gut pathogens. Here, we demonstrate the antimicrobial activities of Lactobacillus species - Lactobacillus paracasei, Lactobacillus casei, and Lactobacillus delbrueckii subsp. bulgaricus are enhanced when cocultured with Salmonella enterica subsp. enterica serovar Typhimurium. Cell-free culture supernatants (CFCS) from cocultures of Lactobacillus spp. and Salmonella enterica serovar Typhimurium more potently inhibit pathogen growth than their monoculture counterparts. Interestingly, we discovered that Salmonella enterica serovar Typhimurium could enhance the production of antimicrobials from Lactobacillus spp., most evident in L. delbrueckii subsp. bulgaricus. Also, L. delbrueckii subsp. bulgaricus CFCS upregulates key Salmonella virulence genes, hilA and sipA. Whether this increases Salmonella's pathogenicity in vivo or reduces pathogen fitness and growth inhibition in vitro warrants further investigation. We propose that these probiotic isolates may be utilized for innovative natural food processing and preservation strategies to control Salmonella food contaminations. Importantly, our findings that Salmonella elicits an enhanced antimicrobial activity from Lactobacillus spp. provide evidence of a pathogen-mediated elicitation of antimicrobial production. Therefore, extending this phenomenon to other microbial interactions may help augment the strategies for drug discovery.
期刊介绍:
The Society publishes the Journal – Tropical Biomedicine, 4 issues yearly. It was first started in 1984. The journal is now abstracted / indexed by Medline, ISI Thompson, CAB International, Zoological Abstracts, SCOPUS. It is available free on the MSPTM website. Members may submit articles on Parasitology, Tropical Medicine and other related subjects for publication in the journal subject to scrutiny by referees. There is a charge of US$200 per manuscript. However, charges will be waived if the first author or corresponding author are members of MSPTM of at least three (3) years'' standing.