How to deal with missing data? Multiple imputation by chained equations: recommendations and explanations for clinical practice

IF 0.7 4区 医学 Q4 UROLOGY & NEPHROLOGY
Bruno Legendre, Damiano Cerasuolo, Olivier Dejardin, Annabel Boyer
{"title":"How to deal with missing data? Multiple imputation by chained equations: recommendations and explanations for clinical practice","authors":"Bruno Legendre,&nbsp;Damiano Cerasuolo,&nbsp;Olivier Dejardin,&nbsp;Annabel Boyer","doi":"10.1684/ndt.2023.24","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of missing data, a constant problem in medical research, has several consequences: systematic loss of power, associated or not with a reduction in the representativeness of the sample analyzed. There are three types of missing data: 1) missing completely at random (MCAR); 2) missing at random (MAR); 3) missing not at random (MNAR). Multiple imputation by chained equations allows for the correct handling of missing data under the MCAR and MAR assumptions. It allows to simulate for each missing data j, a number m of simulated values which seem plausible with regard to the other variables. A random effect is included in this simulation to express the uncertainty. Several data sets are thus created and analyzed individually, in an identical way. Then the estimators of each data set are combined to obtain a global estimator. Multiple imputation increases power, corrects for some biases and has the advantage of being applicable to many types of variables. Complete case analysis should no longer be the norm. The objective of this guide is to help the reader in conducting an analysis with multiple imputed data. We cover the following points: the different types of missing data, the different historical approaches to handling them, and then we detail the multiple imputation method using chained equations. We provide a code example for the mice package of R®.</p>","PeriodicalId":51140,"journal":{"name":"Nephrologie & Therapeutique","volume":"19 3","pages":"171-179"},"PeriodicalIF":0.7000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephrologie & Therapeutique","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1684/ndt.2023.24","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of missing data, a constant problem in medical research, has several consequences: systematic loss of power, associated or not with a reduction in the representativeness of the sample analyzed. There are three types of missing data: 1) missing completely at random (MCAR); 2) missing at random (MAR); 3) missing not at random (MNAR). Multiple imputation by chained equations allows for the correct handling of missing data under the MCAR and MAR assumptions. It allows to simulate for each missing data j, a number m of simulated values which seem plausible with regard to the other variables. A random effect is included in this simulation to express the uncertainty. Several data sets are thus created and analyzed individually, in an identical way. Then the estimators of each data set are combined to obtain a global estimator. Multiple imputation increases power, corrects for some biases and has the advantage of being applicable to many types of variables. Complete case analysis should no longer be the norm. The objective of this guide is to help the reader in conducting an analysis with multiple imputed data. We cover the following points: the different types of missing data, the different historical approaches to handling them, and then we detail the multiple imputation method using chained equations. We provide a code example for the mice package of R®.

如何处理丢失的数据?链式方程多重归算:临床实践的建议与解释
数据缺失是医学研究中一个经常出现的问题,它会产生以下几个后果:系统性丧失能力,无论是否与所分析样本的代表性降低有关。缺失数据有三种类型:1)完全随机缺失(MCAR);2)随机缺失(MAR);非随机缺失(MNAR)。通过链式方程进行多次代入,可以在MCAR和MAR假设下正确处理缺失数据。它允许对每个丢失的数据j进行模拟,对于其他变量来说,这些模拟值似乎是合理的。模拟中加入了随机效应来表达不确定性。因此,以相同的方式创建和单独分析多个数据集。然后将每个数据集的估计量组合起来,得到一个全局估计量。多重归算增加了权力,纠正了一些偏差,并具有适用于许多类型变量的优势。完整的案例分析不应再成为常态。本指南的目的是帮助读者对多个输入数据进行分析。我们涵盖了以下几点:不同类型的缺失数据,不同的历史方法来处理它们,然后我们详细介绍了使用链式方程的多重插值方法。我们为R®的鼠标包提供了一个代码示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nephrologie & Therapeutique
Nephrologie & Therapeutique 医学-泌尿学与肾脏学
CiteScore
0.80
自引率
14.30%
发文量
485
审稿时长
11.9 weeks
期刊介绍: Organe d''expression de la Société de Néphrologie, de la Société Francophone de Dialyse et de la Société de Néphrologie Pédiatrique, Néphrologie et Thérapeutique a pour vocation de publier des textes en français dans le domaine de la Néphrologie, qu''il s''agisse d''actualisation des connaissances, de recommandations de bonne pratique clinique, de publications originales, ou d''informations sur la vie des trois sociétés fondatrices. La variété des thèmes abordés reflète la richesse de la Néphrologie, qu''il s''agisse d''aspects fondamentaux issus de la physiologie, de l''immunologie, de l''anatomo-pathologie, ou de la génétique, ou de sujets de néphrologie clinique, notamment ceux en rapport avec les thérapeutiques néphrologiques, transplantation, hémodialyse et dialyse péritonéale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信