{"title":"Q-learning-based UAV-mounted base station positioning in a disaster scenario for connectivity to the users located at unknown positions.","authors":"Dilip Mandloi, Rajeev Arya","doi":"10.1007/s11227-023-05292-2","DOIUrl":null,"url":null,"abstract":"<p><p>Due to its flexibility, cost-effectiveness, and quick deployment abilities, unmanned aerial vehicle-mounted base station (UmBS) deployment is a promising approach for restoring wireless services in areas devastated by natural disasters such as floods, thunderstorms, and tsunami strikes. However, the biggest challenges in the deployment process of UmBS are ground user equipment's (UE's) position information, UmBS transmit power optimization, and UE-UmBS association. In this article, we propose Localization of ground UEs and their Association with the UmBS (LUAU), an approach that ensures localization of ground UEs and energy-efficient deployment of UmBSs. Unlike existing studies that proposed their work based on the known UEs positional information, we first propose a three-dimensional range-based localization approach (3D-RBL) to estimate the position information of the ground UEs. Subsequently, an optimization problem is formulated to maximize the UE's mean data rate by optimizing the UmBS transmit power and deployment locations while taking the interference from the surrounding UmBSs into consideration. To achieve the goal of the optimization problem, we utilize the exploration and exploitation abilities of the Q-learning framework. Simulation results demonstrate that the proposed approach outperforms two benchmark schemes in terms of the UE's mean data rate and outage percentage.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":" ","pages":"1-32"},"PeriodicalIF":2.5000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116485/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-023-05292-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its flexibility, cost-effectiveness, and quick deployment abilities, unmanned aerial vehicle-mounted base station (UmBS) deployment is a promising approach for restoring wireless services in areas devastated by natural disasters such as floods, thunderstorms, and tsunami strikes. However, the biggest challenges in the deployment process of UmBS are ground user equipment's (UE's) position information, UmBS transmit power optimization, and UE-UmBS association. In this article, we propose Localization of ground UEs and their Association with the UmBS (LUAU), an approach that ensures localization of ground UEs and energy-efficient deployment of UmBSs. Unlike existing studies that proposed their work based on the known UEs positional information, we first propose a three-dimensional range-based localization approach (3D-RBL) to estimate the position information of the ground UEs. Subsequently, an optimization problem is formulated to maximize the UE's mean data rate by optimizing the UmBS transmit power and deployment locations while taking the interference from the surrounding UmBSs into consideration. To achieve the goal of the optimization problem, we utilize the exploration and exploitation abilities of the Q-learning framework. Simulation results demonstrate that the proposed approach outperforms two benchmark schemes in terms of the UE's mean data rate and outage percentage.
期刊介绍:
The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs.
Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.