Identification of hexahydrocannabinol (HHC), dihydro-iso-tetrahydrocannabinol (dihydro-iso-THC) and hexahydrocannabiphorol (HHCP) in electronic cigarette cartridge products.
{"title":"Identification of hexahydrocannabinol (HHC), dihydro-iso-tetrahydrocannabinol (dihydro-iso-THC) and hexahydrocannabiphorol (HHCP) in electronic cigarette cartridge products.","authors":"Rie Tanaka, Ruri Kikura-Hanajiri","doi":"10.1007/s11419-023-00667-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Since 2021, products claiming to contain hexahydrocannabinol (HHC) and hexahydrocannabiphorol (HHCP), which are tetrahydrocannabinol (THC) analogs, have been distributed via the Internet. Owing to the presence of three asymmetric carbons in their structure, HHC and HHCP have multiple stereoisomers. This study aimed to identify the actual stereoisomers of HHC and HHCP isolated from electronic cigarette cartridge products using nuclear magnetic resonance (NMR) spectroscopy.</p><p><strong>Methods: </strong>Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-photodiode array-mass spectrometry (LC-PDA-MS) were used for the analyses of two major peaks and one minor peak in product A and two major peaks in product B. These five compounds were isolated by silica gel column chromatography, and their structures were analyzed by <sup>1</sup>H, <sup>13</sup>C-NMR and various two-dimensional NMR techniques, i.e., H-H correlation spectroscopy, heteronuclear multiple quantum coherence, heteronuclear multiple-bond correlation, and nuclear Overhauser effect spectroscopy.</p><p><strong>Results: </strong>Three compounds isolated from product A were identified as rel-(6aR,9R,10aR)-hexahydrocannabinol (11β-hexahydrocannabinol; 11β-HHC), rel-(6aR,9S,10aR)-hexahydrocannabinol (11α-hexahydrocannabinol, 11α-HHC), and a minor compound (2R,5S,6R)-dihydro-iso-tetrahydrocannabinol (dihydro-iso-THC). Meanwhile, the structural isomers of the major compound isolated from product B were identified as rel-(6aR, 9R, 10aR)-hexahydrocannabiphorol (11β-hexahydrocannabiphorol; 11β-HHCP) and rel-(6aR, 9S, 10aR)-hexahydrocannabiphorol (11α-hexahydrocannabiphorol; 11α-HHCP).</p><p><strong>Conclusions: </strong>The presence of both 11β-HHC and 11α-HHC in the HHC products analyzed in this study suggests that they were most likely synthesized via the reduction reaction of Δ<sup>8</sup>-THC or Δ<sup>9</sup>-THC. Dihydro-iso-THC was probably obtained as a byproduct of the synthesis of Δ<sup>8</sup>-THC or Δ<sup>9</sup>-THC from cannabidiol. Similarly, 11β-HHCP and 11α-HHCP in the HHCP product could stem from Δ<sup>9</sup>-tetrahydrocannabiphorol.</p>","PeriodicalId":12329,"journal":{"name":"Forensic Toxicology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11419-023-00667-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Since 2021, products claiming to contain hexahydrocannabinol (HHC) and hexahydrocannabiphorol (HHCP), which are tetrahydrocannabinol (THC) analogs, have been distributed via the Internet. Owing to the presence of three asymmetric carbons in their structure, HHC and HHCP have multiple stereoisomers. This study aimed to identify the actual stereoisomers of HHC and HHCP isolated from electronic cigarette cartridge products using nuclear magnetic resonance (NMR) spectroscopy.
Methods: Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-photodiode array-mass spectrometry (LC-PDA-MS) were used for the analyses of two major peaks and one minor peak in product A and two major peaks in product B. These five compounds were isolated by silica gel column chromatography, and their structures were analyzed by 1H, 13C-NMR and various two-dimensional NMR techniques, i.e., H-H correlation spectroscopy, heteronuclear multiple quantum coherence, heteronuclear multiple-bond correlation, and nuclear Overhauser effect spectroscopy.
Results: Three compounds isolated from product A were identified as rel-(6aR,9R,10aR)-hexahydrocannabinol (11β-hexahydrocannabinol; 11β-HHC), rel-(6aR,9S,10aR)-hexahydrocannabinol (11α-hexahydrocannabinol, 11α-HHC), and a minor compound (2R,5S,6R)-dihydro-iso-tetrahydrocannabinol (dihydro-iso-THC). Meanwhile, the structural isomers of the major compound isolated from product B were identified as rel-(6aR, 9R, 10aR)-hexahydrocannabiphorol (11β-hexahydrocannabiphorol; 11β-HHCP) and rel-(6aR, 9S, 10aR)-hexahydrocannabiphorol (11α-hexahydrocannabiphorol; 11α-HHCP).
Conclusions: The presence of both 11β-HHC and 11α-HHC in the HHC products analyzed in this study suggests that they were most likely synthesized via the reduction reaction of Δ8-THC or Δ9-THC. Dihydro-iso-THC was probably obtained as a byproduct of the synthesis of Δ8-THC or Δ9-THC from cannabidiol. Similarly, 11β-HHCP and 11α-HHCP in the HHCP product could stem from Δ9-tetrahydrocannabiphorol.
期刊介绍:
The journal Forensic Toxicology provides an international forum for publication of studies on toxic substances, drugs of abuse, doping agents, chemical warfare agents, and their metabolisms and analyses, which are related to laws and ethics. It includes original articles, reviews, mini-reviews, short communications, and case reports. Although a major focus of the journal is on the development or improvement of analytical methods for the above-mentioned chemicals in human matrices, appropriate studies with animal experiments are also published.
Forensic Toxicology is the official publication of the Japanese Association of Forensic Toxicology (JAFT) and is the continuation of the Japanese Journal of Forensic Toxicology (ISSN 0915-9606).