Bin Shen, Akira Saito, Ai Ueda, Koji Fujita, Yui Nagamatsu, Mikihiro Hashimoto, Masaharu Kobayashi, Aashiq H Mirza, Hans Peter Graf, Eric Cosatto, Shoichi Hazama, Hiroaki Nagano, Eiichi Sato, Jun Matsubayashi, Toshitaka Nagao, Esther Cheng, Syed AF Hoda, Takashi Ishikawa, Masahiko Kuroda
{"title":"Development of multiple AI pipelines that predict neoadjuvant chemotherapy response of breast cancer using H&E-stained tissues","authors":"Bin Shen, Akira Saito, Ai Ueda, Koji Fujita, Yui Nagamatsu, Mikihiro Hashimoto, Masaharu Kobayashi, Aashiq H Mirza, Hans Peter Graf, Eric Cosatto, Shoichi Hazama, Hiroaki Nagano, Eiichi Sato, Jun Matsubayashi, Toshitaka Nagao, Esther Cheng, Syed AF Hoda, Takashi Ishikawa, Masahiko Kuroda","doi":"10.1002/cjp2.314","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the treatment of breast cancer has advanced dramatically and neoadjuvant chemotherapy (NAC) has become a common treatment method, especially for locally advanced breast cancer. However, other than the subtype of breast cancer, no clear factor indicating sensitivity to NAC has been identified. In this study, we attempted to use artificial intelligence (AI) to predict the effect of preoperative chemotherapy from hematoxylin and eosin images of pathological tissue obtained from needle biopsies prior to chemotherapy. Application of AI to pathological images typically uses a single machine-learning model such as support vector machines (SVMs) or deep convolutional neural networks (CNNs). However, cancer tissues are extremely diverse and learning with a realistic number of cases limits the prediction accuracy of a single model. In this study, we propose a novel pipeline system that uses three independent models each focusing on different characteristics of cancer atypia. Our system uses a CNN model to learn structural atypia from image patches and SVM and random forest models to learn nuclear atypia from fine-grained nuclear features extracted by image analysis methods. It was able to predict the NAC response with 95.15% accuracy on a test set of 103 unseen cases. We believe that this AI pipeline system will contribute to the adoption of personalized medicine in NAC therapy for breast cancer.</p>","PeriodicalId":48612,"journal":{"name":"Journal of Pathology Clinical Research","volume":"9 3","pages":"182-194"},"PeriodicalIF":3.4000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/49/3e/CJP2-9-182.PMC10073928.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Clinical Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjp2.314","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the treatment of breast cancer has advanced dramatically and neoadjuvant chemotherapy (NAC) has become a common treatment method, especially for locally advanced breast cancer. However, other than the subtype of breast cancer, no clear factor indicating sensitivity to NAC has been identified. In this study, we attempted to use artificial intelligence (AI) to predict the effect of preoperative chemotherapy from hematoxylin and eosin images of pathological tissue obtained from needle biopsies prior to chemotherapy. Application of AI to pathological images typically uses a single machine-learning model such as support vector machines (SVMs) or deep convolutional neural networks (CNNs). However, cancer tissues are extremely diverse and learning with a realistic number of cases limits the prediction accuracy of a single model. In this study, we propose a novel pipeline system that uses three independent models each focusing on different characteristics of cancer atypia. Our system uses a CNN model to learn structural atypia from image patches and SVM and random forest models to learn nuclear atypia from fine-grained nuclear features extracted by image analysis methods. It was able to predict the NAC response with 95.15% accuracy on a test set of 103 unseen cases. We believe that this AI pipeline system will contribute to the adoption of personalized medicine in NAC therapy for breast cancer.
期刊介绍:
The Journal of Pathology: Clinical Research and The Journal of Pathology serve as translational bridges between basic biomedical science and clinical medicine with particular emphasis on, but not restricted to, tissue based studies.
The focus of The Journal of Pathology: Clinical Research is the publication of studies that illuminate the clinical relevance of research in the broad area of the study of disease. Appropriately powered and validated studies with novel diagnostic, prognostic and predictive significance, and biomarker discover and validation, will be welcomed. Studies with a predominantly mechanistic basis will be more appropriate for the companion Journal of Pathology.