The role of angiotensin I-converting enzyme gene polymorphism and global DNA methylation in the negative associations between urine di-(2-ethylhexyl) phthalate metabolites and serum adiponectin in a young Taiwanese population.
{"title":"The role of angiotensin I-converting enzyme gene polymorphism and global DNA methylation in the negative associations between urine di-(2-ethylhexyl) phthalate metabolites and serum adiponectin in a young Taiwanese population.","authors":"Chien-Yu Lin, Hui-Ling Lee, Ching-Way Chen, Chikang Wang, Fung-Chang Sung, Ta-Chen Su","doi":"10.1186/s13148-023-01502-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Adiponectin is a key protein produced in adipose tissue, with crucial involvement in multiple metabolic processes. Di-(2-ethylhexyl) phthalate (DEHP), one of the phthalate compounds used as a plasticizer, has been shown to decrease adiponectin levels in vitro and in vivo studies. However, the role of angiotensin I-converting enzyme (ACE) gene polymorphism and epigenetic changes in the relationship between DEHP exposure and adiponectin levels is not well understood.</p><p><strong>Methods: </strong>This study examined the correlation between urine levels of DEHP metabolite, epigenetic marker 5mdC/dG, ACE gene phenotypes, and adiponectin levels in a sample of 699 individuals aged 12-30 from Taiwan.</p><p><strong>Results: </strong>Results showed a positive relationship between mono-2-ethylhexyl phthalate (MEHP) and 5mdC/dG, and a negative association between both MEHP and 5mdC/dG with adiponectin. The study found that the inverse relationship between MEHP and adiponectin was stronger when levels of 5mdC/dG were above the median. This was supported by differential unstandardized regression coefficients (- 0.095 vs. - 0.049, P value for interaction = 0.038)). Subgroup analysis also showed a negative correlation between MEHP and adiponectin in individuals with the I/I ACE genotype, but not in those with other genotypes, although the P value for interaction was borderline significant (0.06). The structural equation model analysis indicated that MEHP has a direct inverse effect on adiponectin and an indirect effect via 5mdC/dG.</p><p><strong>Conclusions: </strong>In this young Taiwanese population, our findings suggest that urine MEHP levels are negatively correlated with serum adiponectin levels, and epigenetic modifications may play a role in this association. Further study is needed to validate these results and determine causality.</p>","PeriodicalId":48652,"journal":{"name":"Clinical Epigenetics","volume":"15 1","pages":"87"},"PeriodicalIF":5.7000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189977/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epigenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13148-023-01502-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Adiponectin is a key protein produced in adipose tissue, with crucial involvement in multiple metabolic processes. Di-(2-ethylhexyl) phthalate (DEHP), one of the phthalate compounds used as a plasticizer, has been shown to decrease adiponectin levels in vitro and in vivo studies. However, the role of angiotensin I-converting enzyme (ACE) gene polymorphism and epigenetic changes in the relationship between DEHP exposure and adiponectin levels is not well understood.
Methods: This study examined the correlation between urine levels of DEHP metabolite, epigenetic marker 5mdC/dG, ACE gene phenotypes, and adiponectin levels in a sample of 699 individuals aged 12-30 from Taiwan.
Results: Results showed a positive relationship between mono-2-ethylhexyl phthalate (MEHP) and 5mdC/dG, and a negative association between both MEHP and 5mdC/dG with adiponectin. The study found that the inverse relationship between MEHP and adiponectin was stronger when levels of 5mdC/dG were above the median. This was supported by differential unstandardized regression coefficients (- 0.095 vs. - 0.049, P value for interaction = 0.038)). Subgroup analysis also showed a negative correlation between MEHP and adiponectin in individuals with the I/I ACE genotype, but not in those with other genotypes, although the P value for interaction was borderline significant (0.06). The structural equation model analysis indicated that MEHP has a direct inverse effect on adiponectin and an indirect effect via 5mdC/dG.
Conclusions: In this young Taiwanese population, our findings suggest that urine MEHP levels are negatively correlated with serum adiponectin levels, and epigenetic modifications may play a role in this association. Further study is needed to validate these results and determine causality.
Clinical EpigeneticsBiochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
8.90
自引率
5.30%
发文量
150
审稿时长
12 weeks
期刊介绍:
Clinical Epigenetics, the official journal of the Clinical Epigenetics Society, is an open access, peer-reviewed journal that encompasses all aspects of epigenetic principles and mechanisms in relation to human disease, diagnosis and therapy. Clinical trials and research in disease model organisms are particularly welcome.