Integrating single-cell RNA sequencing data to genome-wide association analysis data identifies significant cell types in influenza A virus infection and COVID-19.
IF 2.5 3区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Integrating single-cell RNA sequencing data to genome-wide association analysis data identifies significant cell types in influenza A virus infection and COVID-19.","authors":"Yixin Zou, Xifang Sun, Yifan Wang, Yidi Wang, Xiangyu Ye, Junlan Tu, Rongbin Yu, Peng Huang","doi":"10.1093/bfgp/elad025","DOIUrl":null,"url":null,"abstract":"<p><p>With the global pandemic of COVID-19, the research on influenza virus has entered a new stage, but it is difficult to elucidate the pathogenesis of influenza disease. Genome-wide association studies (GWASs) have greatly shed light on the role of host genetic background in influenza pathogenesis and prognosis, whereas single-cell RNA sequencing (scRNA-seq) has enabled unprecedented resolution of cellular diversity and in vivo following influenza disease. Here, we performed a comprehensive analysis of influenza GWAS and scRNA-seq data to reveal cell types associated with influenza disease and provide clues to understanding pathogenesis. We downloaded two GWAS summary data, two scRNA-seq data on influenza disease. After defining cell types for each scRNA-seq data, we used RolyPoly and LDSC-cts to integrate GWAS and scRNA-seq. Furthermore, we analyzed scRNA-seq data from the peripheral blood mononuclear cells (PBMCs) of a healthy population to validate and compare our results. After processing the scRNA-seq data, we obtained approximately 70 000 cells and identified up to 13 cell types. For the European population analysis, we determined an association between neutrophils and influenza disease. For the East Asian population analysis, we identified an association between monocytes and influenza disease. In addition, we also identified monocytes as a significantly related cell type in a dataset of healthy human PBMCs. In this comprehensive analysis, we identified neutrophils and monocytes as influenza disease-associated cell types. More attention and validation should be given in future studies.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"110-117"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elad025","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the global pandemic of COVID-19, the research on influenza virus has entered a new stage, but it is difficult to elucidate the pathogenesis of influenza disease. Genome-wide association studies (GWASs) have greatly shed light on the role of host genetic background in influenza pathogenesis and prognosis, whereas single-cell RNA sequencing (scRNA-seq) has enabled unprecedented resolution of cellular diversity and in vivo following influenza disease. Here, we performed a comprehensive analysis of influenza GWAS and scRNA-seq data to reveal cell types associated with influenza disease and provide clues to understanding pathogenesis. We downloaded two GWAS summary data, two scRNA-seq data on influenza disease. After defining cell types for each scRNA-seq data, we used RolyPoly and LDSC-cts to integrate GWAS and scRNA-seq. Furthermore, we analyzed scRNA-seq data from the peripheral blood mononuclear cells (PBMCs) of a healthy population to validate and compare our results. After processing the scRNA-seq data, we obtained approximately 70 000 cells and identified up to 13 cell types. For the European population analysis, we determined an association between neutrophils and influenza disease. For the East Asian population analysis, we identified an association between monocytes and influenza disease. In addition, we also identified monocytes as a significantly related cell type in a dataset of healthy human PBMCs. In this comprehensive analysis, we identified neutrophils and monocytes as influenza disease-associated cell types. More attention and validation should be given in future studies.
期刊介绍:
Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data.
The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.