Robust Unsupervised Domain Adaptation from A Corrupted Source.

Shuyang Yu, Zhuangdi Zhu, Boyang Liu, Anil K Jain, Jiayu Zhou
{"title":"Robust Unsupervised Domain Adaptation from A Corrupted Source.","authors":"Shuyang Yu,&nbsp;Zhuangdi Zhu,&nbsp;Boyang Liu,&nbsp;Anil K Jain,&nbsp;Jiayu Zhou","doi":"10.1109/icdm54844.2022.00171","DOIUrl":null,"url":null,"abstract":"<p><p>Unsupervised Domain Adaptation (UDA) provides a promising solution for learning without supervision, which transfers knowledge from relevant source domains with accessible labeled training data. Existing UDA solutions hinge on clean training data with a short-tail distribution from the source domain, which can be fragile when the source domain data is corrupted either inherently or via adversarial attacks. In this work, we propose an effective framework to address the challenges of UDA from corrupted source domains in a principled manner. Specifically, we perform knowledge ensemble from multiple domain-invariant models that are learned on random partitions of training data. To further address the distribution shift from the source to the target domain, we refine each of the learned models via mutual information maximization, which adaptively obtains the predictive information of the target domain with high confidence. Extensive empirical studies demonstrate that the proposed approach is robust against various types of poisoned data attacks while achieving high asymptotic performance on the target domain.</p>","PeriodicalId":74565,"journal":{"name":"Proceedings. IEEE International Conference on Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097501/pdf/nihms-1888097.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icdm54844.2022.00171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised Domain Adaptation (UDA) provides a promising solution for learning without supervision, which transfers knowledge from relevant source domains with accessible labeled training data. Existing UDA solutions hinge on clean training data with a short-tail distribution from the source domain, which can be fragile when the source domain data is corrupted either inherently or via adversarial attacks. In this work, we propose an effective framework to address the challenges of UDA from corrupted source domains in a principled manner. Specifically, we perform knowledge ensemble from multiple domain-invariant models that are learned on random partitions of training data. To further address the distribution shift from the source to the target domain, we refine each of the learned models via mutual information maximization, which adaptively obtains the predictive information of the target domain with high confidence. Extensive empirical studies demonstrate that the proposed approach is robust against various types of poisoned data attacks while achieving high asymptotic performance on the target domain.

来自损坏源的鲁棒无监督域自适应。
无监督领域自适应(UDA)为无监督学习提供了一种很有前途的解决方案,它通过可访问的标记训练数据从相关源领域转移知识。现有的UDA解决方案依赖于来自源域的具有短尾分布的干净训练数据,当源域数据被固有地或通过对抗性攻击破坏时,这可能是脆弱的。在这项工作中,我们提出了一个有效的框架,以原则的方式应对来自损坏源域的UDA挑战。具体来说,我们从在训练数据的随机分区上学习的多个域不变模型中执行知识集成。为了进一步解决从源域到目标域的分布偏移,我们通过互信息最大化来细化每个学习的模型,该模型自适应地以高置信度获得目标域的预测信息。大量的实证研究表明,所提出的方法对各种类型的中毒数据攻击具有鲁棒性,同时在目标域上实现了较高的渐近性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信