Functional connectomics reveals general wiring rule in mouse visual cortex.

Zhuokun Ding, Paul G Fahey, Stelios Papadopoulos, Eric Y Wang, Brendan Celii, Christos Papadopoulos, Andersen Chang, Alexander B Kunin, Dat Tran, Jiakun Fu, Zhiwei Ding, Saumil Patel, Lydia Ntanavara, Rachel Froebe, Kayla Ponder, Taliah Muhammad, J Alexander Bae, Agnes L Bodor, Derrick Brittain, JoAnn Buchanan, Daniel J Bumbarger, Manuel A Castro, Erick Cobos, Sven Dorkenwald, Leila Elabbady, Akhilesh Halageri, Zhen Jia, Chris Jordan, Dan Kapner, Nico Kemnitz, Sam Kinn, Kisuk Lee, Kai Li, Ran Lu, Thomas Macrina, Gayathri Mahalingam, Eric Mitchell, Shanka Subhra Mondal, Shang Mu, Barak Nehoran, Sergiy Popovych, Casey M Schneider-Mizell, William Silversmith, Marc Takeno, Russel Torres, Nicholas L Turner, William Wong, Jingpeng Wu, Wenjing Yin, Szi-Chieh Yu, Dimitri Yatsenko, Emmanouil Froudarakis, Fabian Sinz, Krešimir Josić, Robert Rosenbaum, H Sebastian Seung, Forrest Collman, Nuno Maçarico da Costa, R Clay Reid, Edgar Y Walker, Xaq Pitkow, Jacob Reimer, Andreas S Tolias
{"title":"Functional connectomics reveals general wiring rule in mouse visual cortex.","authors":"Zhuokun Ding, Paul G Fahey, Stelios Papadopoulos, Eric Y Wang, Brendan Celii, Christos Papadopoulos, Andersen Chang, Alexander B Kunin, Dat Tran, Jiakun Fu, Zhiwei Ding, Saumil Patel, Lydia Ntanavara, Rachel Froebe, Kayla Ponder, Taliah Muhammad, J Alexander Bae, Agnes L Bodor, Derrick Brittain, JoAnn Buchanan, Daniel J Bumbarger, Manuel A Castro, Erick Cobos, Sven Dorkenwald, Leila Elabbady, Akhilesh Halageri, Zhen Jia, Chris Jordan, Dan Kapner, Nico Kemnitz, Sam Kinn, Kisuk Lee, Kai Li, Ran Lu, Thomas Macrina, Gayathri Mahalingam, Eric Mitchell, Shanka Subhra Mondal, Shang Mu, Barak Nehoran, Sergiy Popovych, Casey M Schneider-Mizell, William Silversmith, Marc Takeno, Russel Torres, Nicholas L Turner, William Wong, Jingpeng Wu, Wenjing Yin, Szi-Chieh Yu, Dimitri Yatsenko, Emmanouil Froudarakis, Fabian Sinz, Krešimir Josić, Robert Rosenbaum, H Sebastian Seung, Forrest Collman, Nuno Maçarico da Costa, R Clay Reid, Edgar Y Walker, Xaq Pitkow, Jacob Reimer, Andreas S Tolias","doi":"10.1101/2023.03.13.531369","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the relationship between circuit connectivity and function is crucial for uncovering how the brain implements computation. In the mouse primary visual cortex (V1), excitatory neurons with similar response properties are more likely to be synaptically connected, but previous studies have been limited to within V1, leaving much unknown about broader connectivity rules. In this study, we leverage the millimeter-scale MICrONS dataset to analyze synaptic connectivity and functional properties of individual neurons across cortical layers and areas. Our results reveal that neurons with similar responses are preferentially connected both within and across layers and areas - including feedback connections - suggesting the universality of the 'like-to-like' connectivity across the visual hierarchy. Using a validated digital twin model, we separated neuronal tuning into feature (what neurons respond to) and spatial (receptive field location) components. We found that only the feature component predicts fine-scale synaptic connections, beyond what could be explained by the physical proximity of axons and dendrites. We also found a higher-order rule where postsynaptic neuron cohorts downstream of individual presynaptic cells show greater functional similarity than predicted by a pairwise like-to-like rule. Notably, recurrent neural networks (RNNs) trained on a simple classification task develop connectivity patterns mirroring both pairwise and higher-order rules, with magnitude similar to those in the MICrONS data. Lesion studies in these RNNs reveal that disrupting 'like-to-like' connections has a significantly greater impact on performance compared to lesions of random connections. These findings suggest that these connectivity principles may play a functional role in sensory processing and learning, highlighting shared principles between biological and artificial systems.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.03.13.531369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the relationship between circuit connectivity and function is crucial for uncovering how the brain implements computation. In the mouse primary visual cortex (V1), excitatory neurons with similar response properties are more likely to be synaptically connected, but previous studies have been limited to within V1, leaving much unknown about broader connectivity rules. In this study, we leverage the millimeter-scale MICrONS dataset to analyze synaptic connectivity and functional properties of individual neurons across cortical layers and areas. Our results reveal that neurons with similar responses are preferentially connected both within and across layers and areas - including feedback connections - suggesting the universality of the 'like-to-like' connectivity across the visual hierarchy. Using a validated digital twin model, we separated neuronal tuning into feature (what neurons respond to) and spatial (receptive field location) components. We found that only the feature component predicts fine-scale synaptic connections, beyond what could be explained by the physical proximity of axons and dendrites. We also found a higher-order rule where postsynaptic neuron cohorts downstream of individual presynaptic cells show greater functional similarity than predicted by a pairwise like-to-like rule. Notably, recurrent neural networks (RNNs) trained on a simple classification task develop connectivity patterns mirroring both pairwise and higher-order rules, with magnitude similar to those in the MICrONS data. Lesion studies in these RNNs reveal that disrupting 'like-to-like' connections has a significantly greater impact on performance compared to lesions of random connections. These findings suggest that these connectivity principles may play a functional role in sensory processing and learning, highlighting shared principles between biological and artificial systems.

Abstract Image

Abstract Image

Abstract Image

功能连接组学揭示了小鼠视觉皮层的一般接线规则。
为了理解大脑是如何计算的,弄清电路连接和功能之间的关系很重要。先前的研究表明,具有类似反应特性的小鼠初级视觉皮层2/3层的兴奋性神经元更有可能形成连接。然而,将突触连接和功能测量相结合的技术挑战将这些研究局限于少数高度局部的连接。利用MICrONS数据集的毫米级和纳米级分辨率,我们研究了小鼠视觉皮层兴奋性神经元在层间和区间投影中的连接函数关系,评估了粗轴突轨迹和细突触形成水平上的连接选择性。这种小鼠的数字双胞胎模型能够准确预测对任意视频刺激的反应,从而能够全面表征神经元的功能。我们发现,对自然视频具有高度相关反应的神经元往往相互连接,不仅在同一皮层区域内,而且在多层和视觉区域之间,包括前馈和反馈连接,而我们没有发现定向偏好预测连接。数字孪生模型将每个神经元的调谐分为特征分量(神经元的反应)和空间分量(神经元感受野的位置)。我们发现,在精细突触尺度上,预测哪些神经元连接的是特征,而不是空间成分。总之,我们的结果表明,“相似”连接规则可推广到多种连接类型,丰富的MICrONS数据集适用于进一步完善对电路结构和功能的机械理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信