Role of the Yersinia pseudotuberculosis Virulence Plasmid in Pathogen-Phagocyte Interactions in Mesenteric Lymph Nodes.

Q1 Medicine
James B Bliska, Igor E Brodsky, Joan Mecsas
{"title":"Role of the Yersinia pseudotuberculosis Virulence Plasmid in Pathogen-Phagocyte Interactions in Mesenteric Lymph Nodes.","authors":"James B Bliska,&nbsp;Igor E Brodsky,&nbsp;Joan Mecsas","doi":"10.1128/ecosalplus.ESP-0014-2021","DOIUrl":null,"url":null,"abstract":"<p><p>Yersinia pseudotuberculosis is an <i>Enterobacteriaceae</i> family member that is commonly transmitted by the fecal-oral route to cause infections. From the small intestine, Y. pseudotuberculosis can invade through Peyer's patches and lymph vessels to infect the mesenteric lymph nodes (MLNs). Infection of MLNs by Y. pseudotuberculosis results in the clinical presentation of mesenteric lymphadenitis. MLNs are important for immune responses to intestinal pathogens and microbiota in addition to their clinical relevance to Y. pseudotuberculosis infections. A characteristic of Y. pseudotuberculosis infection in MLNs is the formation of pyogranulomas. Pyogranulomas are composed of neutrophils, inflammatory monocytes, and lymphocytes surrounding extracellular microcolonies of Y. pseudotuberculosis. Key elements of the complex pathogen-host interaction in MLNs have been identified using mouse infection models. Y. pseudotuberculosis requires the virulence plasmid pYV to induce the formation of pyogranulomas in MLNs. The YadA adhesin and the Ysc-Yop type III secretion system (T3SS) are encoded on pYV. YadA mediates bacterial binding to host receptors, which engages the T3SS to preferentially translocate seven Yop effectors into phagocytes. The effectors promote pathogenesis by blocking innate immune defenses such as superoxide production, degranulation, and inflammasome activation, resulting in survival and growth of Y. pseudotuberculosis. On the other hand, certain effectors can trigger immune defenses in phagocytes. For example, YopJ triggers activation of caspase-8 and an apoptotic cell death response in monocytes within pyogranulomas that limits dissemination of Y. pseudotuberculosis from MLNs to the bloodstream. YopE can be processed as an antigen by phagocytes in MLNs, resulting in T and B cell responses to Y. pseudotuberculosis. Immune responses to Y. pseudotuberculosis in MLNs can also be detrimental to the host in the form of chronic lymphadenopathy. This review focuses on interactions between Y. pseudotuberculosis and phagocytes mediated by pYV that concurrently promote pathogenesis and host defense in MLNs. We propose that MLN pyogranulomas are immunological arenas in which opposing pYV-driven forces determine the outcome of infection in favor of the pathogen or host.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257136/pdf/nihms-1906441.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoSal Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/ecosalplus.ESP-0014-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2

Abstract

Yersinia pseudotuberculosis is an Enterobacteriaceae family member that is commonly transmitted by the fecal-oral route to cause infections. From the small intestine, Y. pseudotuberculosis can invade through Peyer's patches and lymph vessels to infect the mesenteric lymph nodes (MLNs). Infection of MLNs by Y. pseudotuberculosis results in the clinical presentation of mesenteric lymphadenitis. MLNs are important for immune responses to intestinal pathogens and microbiota in addition to their clinical relevance to Y. pseudotuberculosis infections. A characteristic of Y. pseudotuberculosis infection in MLNs is the formation of pyogranulomas. Pyogranulomas are composed of neutrophils, inflammatory monocytes, and lymphocytes surrounding extracellular microcolonies of Y. pseudotuberculosis. Key elements of the complex pathogen-host interaction in MLNs have been identified using mouse infection models. Y. pseudotuberculosis requires the virulence plasmid pYV to induce the formation of pyogranulomas in MLNs. The YadA adhesin and the Ysc-Yop type III secretion system (T3SS) are encoded on pYV. YadA mediates bacterial binding to host receptors, which engages the T3SS to preferentially translocate seven Yop effectors into phagocytes. The effectors promote pathogenesis by blocking innate immune defenses such as superoxide production, degranulation, and inflammasome activation, resulting in survival and growth of Y. pseudotuberculosis. On the other hand, certain effectors can trigger immune defenses in phagocytes. For example, YopJ triggers activation of caspase-8 and an apoptotic cell death response in monocytes within pyogranulomas that limits dissemination of Y. pseudotuberculosis from MLNs to the bloodstream. YopE can be processed as an antigen by phagocytes in MLNs, resulting in T and B cell responses to Y. pseudotuberculosis. Immune responses to Y. pseudotuberculosis in MLNs can also be detrimental to the host in the form of chronic lymphadenopathy. This review focuses on interactions between Y. pseudotuberculosis and phagocytes mediated by pYV that concurrently promote pathogenesis and host defense in MLNs. We propose that MLN pyogranulomas are immunological arenas in which opposing pYV-driven forces determine the outcome of infection in favor of the pathogen or host.

Abstract Image

假结核耶尔森菌毒力质粒在肠系膜淋巴结病原体-吞噬细胞相互作用中的作用。
假结核耶尔森菌是肠杆菌科的一种成员,通常通过粪-口途径传播,引起感染。从小肠开始,假结核杆菌可通过Peyer’s patches和淋巴管侵入肠系膜淋巴结(MLNs)。假结核耶氏杆菌感染mln导致肠系膜淋巴结炎的临床表现。除了与假结核杆菌感染的临床相关性外,mln对肠道病原体和微生物群的免疫反应也很重要。mln中假结核耶氏菌感染的一个特征是形成肉芽肿。脓肉芽肿由中性粒细胞、炎性单核细胞和淋巴细胞围绕假结核杆菌的细胞外微菌落组成。利用小鼠感染模型确定了MLNs中复杂病原体-宿主相互作用的关键因素。假结核杆菌需要毒力质粒pYV诱导mln中脓肉芽肿的形成。YadA黏附素和Ysc-Yop III型分泌系统(T3SS)编码在pYV上。YadA介导细菌与宿主受体的结合,使T3SS优先将7种Yop效应物转运到吞噬细胞中。这些效应物通过阻断先天免疫防御,如超氧化物的产生、脱颗粒和炎性体的激活,促进发病机制,导致假结核杆菌的存活和生长。另一方面,某些效应器可以触发吞噬细胞的免疫防御。例如,YopJ在脓肉芽肿内的单核细胞中触发caspase-8的激活和凋亡细胞死亡反应,从而限制假结核杆菌从mln向血液的传播。YopE可以作为抗原被mln中的吞噬细胞加工,导致T细胞和B细胞对假结核耶氏菌产生应答。在mln中对假结核耶氏菌的免疫反应也可能以慢性淋巴结病的形式对宿主有害。本文综述了假结核杆菌与pYV介导的吞噬细胞之间的相互作用,这些相互作用同时促进mln的发病和宿主防御。我们认为,MLN脓肉芽肿是免疫领域,其中反对pyv驱动的力量决定了有利于病原体或宿主的感染结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EcoSal Plus
EcoSal Plus Immunology and Microbiology-Microbiology
CiteScore
12.20
自引率
0.00%
发文量
4
期刊介绍: EcoSal Plus is the authoritative online review journal that publishes an ever-growing body of expert reviews covering virtually all aspects of E. coli, Salmonella, and other members of the family Enterobacteriaceae and their use as model microbes for biological explorations. This journal is intended primarily for the research community as a comprehensive and continuously updated archive of the entire corpus of knowledge about the enteric bacterial cell. Thoughtful reviews focus on physiology, metabolism, genetics, pathogenesis, ecology, genomics, systems biology, and history E. coli and its relatives. These provide the integrated background needed for most microbiology investigations and are essential reading for research scientists. Articles contain links to E. coli K12 genes on the EcoCyc database site and are available as downloadable PDF files. Images and tables are downloadable to PowerPoint files.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信