{"title":"Role of the Yersinia pseudotuberculosis Virulence Plasmid in Pathogen-Phagocyte Interactions in Mesenteric Lymph Nodes.","authors":"James B Bliska, Igor E Brodsky, Joan Mecsas","doi":"10.1128/ecosalplus.ESP-0014-2021","DOIUrl":null,"url":null,"abstract":"<p><p>Yersinia pseudotuberculosis is an <i>Enterobacteriaceae</i> family member that is commonly transmitted by the fecal-oral route to cause infections. From the small intestine, Y. pseudotuberculosis can invade through Peyer's patches and lymph vessels to infect the mesenteric lymph nodes (MLNs). Infection of MLNs by Y. pseudotuberculosis results in the clinical presentation of mesenteric lymphadenitis. MLNs are important for immune responses to intestinal pathogens and microbiota in addition to their clinical relevance to Y. pseudotuberculosis infections. A characteristic of Y. pseudotuberculosis infection in MLNs is the formation of pyogranulomas. Pyogranulomas are composed of neutrophils, inflammatory monocytes, and lymphocytes surrounding extracellular microcolonies of Y. pseudotuberculosis. Key elements of the complex pathogen-host interaction in MLNs have been identified using mouse infection models. Y. pseudotuberculosis requires the virulence plasmid pYV to induce the formation of pyogranulomas in MLNs. The YadA adhesin and the Ysc-Yop type III secretion system (T3SS) are encoded on pYV. YadA mediates bacterial binding to host receptors, which engages the T3SS to preferentially translocate seven Yop effectors into phagocytes. The effectors promote pathogenesis by blocking innate immune defenses such as superoxide production, degranulation, and inflammasome activation, resulting in survival and growth of Y. pseudotuberculosis. On the other hand, certain effectors can trigger immune defenses in phagocytes. For example, YopJ triggers activation of caspase-8 and an apoptotic cell death response in monocytes within pyogranulomas that limits dissemination of Y. pseudotuberculosis from MLNs to the bloodstream. YopE can be processed as an antigen by phagocytes in MLNs, resulting in T and B cell responses to Y. pseudotuberculosis. Immune responses to Y. pseudotuberculosis in MLNs can also be detrimental to the host in the form of chronic lymphadenopathy. This review focuses on interactions between Y. pseudotuberculosis and phagocytes mediated by pYV that concurrently promote pathogenesis and host defense in MLNs. We propose that MLN pyogranulomas are immunological arenas in which opposing pYV-driven forces determine the outcome of infection in favor of the pathogen or host.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257136/pdf/nihms-1906441.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoSal Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/ecosalplus.ESP-0014-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2
Abstract
Yersinia pseudotuberculosis is an Enterobacteriaceae family member that is commonly transmitted by the fecal-oral route to cause infections. From the small intestine, Y. pseudotuberculosis can invade through Peyer's patches and lymph vessels to infect the mesenteric lymph nodes (MLNs). Infection of MLNs by Y. pseudotuberculosis results in the clinical presentation of mesenteric lymphadenitis. MLNs are important for immune responses to intestinal pathogens and microbiota in addition to their clinical relevance to Y. pseudotuberculosis infections. A characteristic of Y. pseudotuberculosis infection in MLNs is the formation of pyogranulomas. Pyogranulomas are composed of neutrophils, inflammatory monocytes, and lymphocytes surrounding extracellular microcolonies of Y. pseudotuberculosis. Key elements of the complex pathogen-host interaction in MLNs have been identified using mouse infection models. Y. pseudotuberculosis requires the virulence plasmid pYV to induce the formation of pyogranulomas in MLNs. The YadA adhesin and the Ysc-Yop type III secretion system (T3SS) are encoded on pYV. YadA mediates bacterial binding to host receptors, which engages the T3SS to preferentially translocate seven Yop effectors into phagocytes. The effectors promote pathogenesis by blocking innate immune defenses such as superoxide production, degranulation, and inflammasome activation, resulting in survival and growth of Y. pseudotuberculosis. On the other hand, certain effectors can trigger immune defenses in phagocytes. For example, YopJ triggers activation of caspase-8 and an apoptotic cell death response in monocytes within pyogranulomas that limits dissemination of Y. pseudotuberculosis from MLNs to the bloodstream. YopE can be processed as an antigen by phagocytes in MLNs, resulting in T and B cell responses to Y. pseudotuberculosis. Immune responses to Y. pseudotuberculosis in MLNs can also be detrimental to the host in the form of chronic lymphadenopathy. This review focuses on interactions between Y. pseudotuberculosis and phagocytes mediated by pYV that concurrently promote pathogenesis and host defense in MLNs. We propose that MLN pyogranulomas are immunological arenas in which opposing pYV-driven forces determine the outcome of infection in favor of the pathogen or host.
EcoSal PlusImmunology and Microbiology-Microbiology
CiteScore
12.20
自引率
0.00%
发文量
4
期刊介绍:
EcoSal Plus is the authoritative online review journal that publishes an ever-growing body of expert reviews covering virtually all aspects of E. coli, Salmonella, and other members of the family Enterobacteriaceae and their use as model microbes for biological explorations. This journal is intended primarily for the research community as a comprehensive and continuously updated archive of the entire corpus of knowledge about the enteric bacterial cell. Thoughtful reviews focus on physiology, metabolism, genetics, pathogenesis, ecology, genomics, systems biology, and history E. coli and its relatives. These provide the integrated background needed for most microbiology investigations and are essential reading for research scientists. Articles contain links to E. coli K12 genes on the EcoCyc database site and are available as downloadable PDF files. Images and tables are downloadable to PowerPoint files.