Biosynthesis of cannabigerol and cannabigerolic acid: the gateways to further cannabinoid production.

IF 2.6 Q2 BIOCHEMICAL RESEARCH METHODS
Synthetic biology (Oxford, England) Pub Date : 2023-05-27 eCollection Date: 2023-01-01 DOI:10.1093/synbio/ysad010
Lewis J Kearsey, Cunyu Yan, Nicole Prandi, Helen S Toogood, Eriko Takano, Nigel S Scrutton
{"title":"Biosynthesis of cannabigerol and cannabigerolic acid: the gateways to further cannabinoid production.","authors":"Lewis J Kearsey, Cunyu Yan, Nicole Prandi, Helen S Toogood, Eriko Takano, Nigel S Scrutton","doi":"10.1093/synbio/ysad010","DOIUrl":null,"url":null,"abstract":"<p><p>Cannabinoids are a therapeutically valuable class of secondary metabolites with a vast number of substituents. The native cannabinoid biosynthetic pathway of <i>Cannabis sativa</i> generates cannabigerolic acid (CBGA), the common substrate to multiple cannabinoid synthases. The bioactive decarboxylated analog of this compound, cannabigerol (CBG), represents an alternate gateway into the cannabinoid space as a substrate either to non-canonical cannabinoid synthase homologs or to synthetic chemical reactions. Herein, we describe the identification and repurposing of aromatic prenyltransferase (AtaPT), which when coupled with native enzymes of <i>C. sativa</i> can form an <i>Escherichia coli</i> production system for CBGA in cell lysates and CBG in whole cells. Engineering of AtaPT, guided by structural analysis, was performed to enhance its kinetics toward CBGA production for subsequent use in a proof-of-concept lysate system. For the first time, we show a synthetic biology platform for CBG biosynthesis in <i>E. coli</i> cells by employing AtaPT under an optimized microbial system. Our results have therefore set the foundation for sustainable production of well-researched and rarer cannabinoids in an <i>E. coli</i> chassis. <b>Graphical Abstract</b>.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"8 1","pages":"ysad010"},"PeriodicalIF":2.6000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10263468/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysad010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cannabinoids are a therapeutically valuable class of secondary metabolites with a vast number of substituents. The native cannabinoid biosynthetic pathway of Cannabis sativa generates cannabigerolic acid (CBGA), the common substrate to multiple cannabinoid synthases. The bioactive decarboxylated analog of this compound, cannabigerol (CBG), represents an alternate gateway into the cannabinoid space as a substrate either to non-canonical cannabinoid synthase homologs or to synthetic chemical reactions. Herein, we describe the identification and repurposing of aromatic prenyltransferase (AtaPT), which when coupled with native enzymes of C. sativa can form an Escherichia coli production system for CBGA in cell lysates and CBG in whole cells. Engineering of AtaPT, guided by structural analysis, was performed to enhance its kinetics toward CBGA production for subsequent use in a proof-of-concept lysate system. For the first time, we show a synthetic biology platform for CBG biosynthesis in E. coli cells by employing AtaPT under an optimized microbial system. Our results have therefore set the foundation for sustainable production of well-researched and rarer cannabinoids in an E. coli chassis. Graphical Abstract.

大麻酚和大麻酚酸的生物合成:进一步生产大麻素的途径。
大麻素是一类具有治疗价值的次级代谢产物,其取代基种类繁多。大麻的原生大麻素生物合成途径产生大麻萜酸(CBGA),它是多种大麻素合成酶的共同底物。这种化合物的生物活性脱羧类似物大麻萜醇(CBG)是进入大麻素空间的另一种途径,可作为非经典大麻素合成酶同源物或合成化学反应的底物。在本文中,我们介绍了芳香族前酰转移酶(AtaPT)的鉴定和再利用,当它与 C. sativa 的原生酶结合时,可以形成一个大肠杆菌生产系统,在细胞裂解液中生产 CBGA,在整个细胞中生产 CBG。在结构分析的指导下,我们对 AtaPT 进行了工程改造,以提高其生产 CBGA 的动力学性能,随后将其用于概念验证裂解物系统。通过在优化的微生物系统中使用 AtaPT,我们首次展示了在大肠杆菌细胞中进行 CBG 生物合成的合成生物学平台。因此,我们的成果为在大肠杆菌底盘中可持续地生产经过深入研究的稀有大麻素奠定了基础。图解摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信