Selecting scaling indicators in structural equation models (sems).

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Psychological methods Pub Date : 2024-10-01 Epub Date: 2022-10-06 DOI:10.1037/met0000530
Kenneth A Bollen, Adam G Lilly, Lan Luo
{"title":"Selecting scaling indicators in structural equation models (sems).","authors":"Kenneth A Bollen, Adam G Lilly, Lan Luo","doi":"10.1037/met0000530","DOIUrl":null,"url":null,"abstract":"<p><p>It is common practice for psychologists to specify models with latent variables to represent concepts that are difficult to directly measure. Each latent variable needs a scale, and the most popular method of scaling as well as the default in most structural equation modeling (SEM) software uses a scaling or reference indicator. Much of the time, the choice of which indicator to use for this purpose receives little attention, and many analysts use the first indicator without considering whether there are better choices. When all indicators of the latent variable have essentially the same properties, then the choice matters less. But when this is not true, we could benefit from scaling indicator guidelines. Our article first demonstrates why latent variables need a scale. We then propose a set of criteria and accompanying diagnostic tools that can assist researchers in making informed decisions about scaling indicators. The criteria for a good scaling indicator include high face validity, high correlation with the latent variable, factor complexity of one, no correlated errors, no direct effects with other indicators, a minimal number of significant overidentification equation tests and modification indices, and invariance across groups and time. We demonstrate these criteria and diagnostics using two empirical examples and provide guidance on navigating conflicting results among criteria. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"868-889"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000530","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is common practice for psychologists to specify models with latent variables to represent concepts that are difficult to directly measure. Each latent variable needs a scale, and the most popular method of scaling as well as the default in most structural equation modeling (SEM) software uses a scaling or reference indicator. Much of the time, the choice of which indicator to use for this purpose receives little attention, and many analysts use the first indicator without considering whether there are better choices. When all indicators of the latent variable have essentially the same properties, then the choice matters less. But when this is not true, we could benefit from scaling indicator guidelines. Our article first demonstrates why latent variables need a scale. We then propose a set of criteria and accompanying diagnostic tools that can assist researchers in making informed decisions about scaling indicators. The criteria for a good scaling indicator include high face validity, high correlation with the latent variable, factor complexity of one, no correlated errors, no direct effects with other indicators, a minimal number of significant overidentification equation tests and modification indices, and invariance across groups and time. We demonstrate these criteria and diagnostics using two empirical examples and provide guidance on navigating conflicting results among criteria. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

在结构方程模型(sems)中选择比例指标。
心理学家通常会用潜变量来指定模型,以表示难以直接测量的概念。每个潜变量都需要一个标度,而最常用的标度方法以及大多数结构方程建模(SEM)软件的默认值都使用标度或参考指标。在很多情况下,选择使用哪个指标并没有引起足够的重视,很多分析师使用第一个指标,而不考虑是否有更好的选择。当潜在变量的所有指标都具有基本相同的属性时,选择就不那么重要了。但当情况并非如此时,我们就可以从缩放指标指南中获益。我们的文章首先说明了为什么潜变量需要标度。然后,我们提出了一套标准和相应的诊断工具,可以帮助研究人员就标度指标做出明智的决定。好的标度指标的标准包括:高表面效度、与潜变量高度相关、因子复杂度为一、无相关误差、与其他指标无直接影响、最小数量的显著过度识别方程测试和修正指数,以及跨组和跨时间的不变性。我们通过两个实证案例来展示这些标准和诊断方法,并为如何在标准之间找到相互矛盾的结果提供指导。(PsycInfo Database Record (c) 2022 APA,保留所有权利)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信