{"title":"GB-score: Minimally designed machine learning scoring function based on distance-weighted interatomic contact features.","authors":"Milad Rayka, Rohoullah Firouzi","doi":"10.1002/minf.202200135","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, thanks to advances in computer hardware and dataset availability, data-driven approaches (like machine learning) have become one of the essential parts of the drug design framework to accelerate drug discovery procedures. Constructing a new scoring function, a function that can predict the binding score for a generated protein-ligand pose during docking procedure or a crystal complex, based on machine and deep learning has become an active research area in computer-aided drug design. GB-Score is a state-of-the-art machine learning-based scoring function that utilizes distance-weighted interatomic contact features, PDBbind-v2019 general set, and Gradient Boosting Trees algorithm to the binding affinity prediction. The distance-weighted interatomic contact featurization method used the distance between different ligand and protein atom types for numerical representation of the protein-ligand complex. GB-Score attains Pearson's correlation 0.862 and RMSE 1.190 on the CASF-2016 benchmark test in the scoring power metric. GB-Score's codes are freely available on the web at https://github.com/miladrayka/GB_Score.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202200135","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 3
Abstract
In recent years, thanks to advances in computer hardware and dataset availability, data-driven approaches (like machine learning) have become one of the essential parts of the drug design framework to accelerate drug discovery procedures. Constructing a new scoring function, a function that can predict the binding score for a generated protein-ligand pose during docking procedure or a crystal complex, based on machine and deep learning has become an active research area in computer-aided drug design. GB-Score is a state-of-the-art machine learning-based scoring function that utilizes distance-weighted interatomic contact features, PDBbind-v2019 general set, and Gradient Boosting Trees algorithm to the binding affinity prediction. The distance-weighted interatomic contact featurization method used the distance between different ligand and protein atom types for numerical representation of the protein-ligand complex. GB-Score attains Pearson's correlation 0.862 and RMSE 1.190 on the CASF-2016 benchmark test in the scoring power metric. GB-Score's codes are freely available on the web at https://github.com/miladrayka/GB_Score.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.