Inferring Pyramidal Neuron Morphology using EAP Data.

Ziao Chen, Matthew Carroll, Satish S Nair
{"title":"Inferring Pyramidal Neuron Morphology using EAP Data.","authors":"Ziao Chen,&nbsp;Matthew Carroll,&nbsp;Satish S Nair","doi":"10.1109/ner52421.2023.10123903","DOIUrl":null,"url":null,"abstract":"<p><p>We report a computational algorithm that uses an inverse modeling scheme to infer neuron position and morphology of cortical pyramidal neurons using spatio-temporal extracellular action potential recordings.. We first develop a generic pyramidal neuron model with stylized morphology and active channels that could mimic the realistic electrophysiological dynamics of pyramidal cells from different cortical layers. The generic stylized single neuron model has adjustable parameters for soma location, and morphology and orientation of the dendrites. The ranges for the parameters were selected to include morphology of the pyramidal neuron types in the rodent primary motor cortex. We then developed a machine learning approach that uses the local field potential simulated from the stylized model for training a convolutional neural network that predicts the parameters of the stylized neuron model. Preliminary results suggest that the proposed methodology can reliably infer the key position and morphology parameters using the simulated spatio-temporal profile of EAP waveforms. We also provide partial support to validate the inference algorithm using in vivo data. Finally, we highlight the issues involved and ongoing work to develop a pipeline to automate the scheme.</p>","PeriodicalId":73414,"journal":{"name":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","volume":"2023 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10259830/pdf/nihms-1892244.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ner52421.2023.10123903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We report a computational algorithm that uses an inverse modeling scheme to infer neuron position and morphology of cortical pyramidal neurons using spatio-temporal extracellular action potential recordings.. We first develop a generic pyramidal neuron model with stylized morphology and active channels that could mimic the realistic electrophysiological dynamics of pyramidal cells from different cortical layers. The generic stylized single neuron model has adjustable parameters for soma location, and morphology and orientation of the dendrites. The ranges for the parameters were selected to include morphology of the pyramidal neuron types in the rodent primary motor cortex. We then developed a machine learning approach that uses the local field potential simulated from the stylized model for training a convolutional neural network that predicts the parameters of the stylized neuron model. Preliminary results suggest that the proposed methodology can reliably infer the key position and morphology parameters using the simulated spatio-temporal profile of EAP waveforms. We also provide partial support to validate the inference algorithm using in vivo data. Finally, we highlight the issues involved and ongoing work to develop a pipeline to automate the scheme.

利用EAP数据推断锥体神经元形态。
我们报告了一种计算算法,该算法使用逆建模方案来推断皮层锥体神经元的神经元位置和形态,使用时空胞外动作电位记录。我们首先开发了一个通用的锥体神经元模型,具有程式化的形态和活跃的通道,可以模拟来自不同皮层的锥体细胞的现实电生理动力学。通用的程式化单神经元模型具有可调整的参数,包括胞体位置、树突的形态和方向。选取的参数范围包括啮齿类动物初级运动皮层锥体神经元类型的形态学。然后,我们开发了一种机器学习方法,该方法使用从风格化模型模拟的局部场势来训练卷积神经网络,该网络预测风格化神经元模型的参数。初步结果表明,利用模拟的EAP波形时空剖面,该方法可以可靠地推断出关键位置和形态参数。我们还提供了部分支持来验证使用体内数据的推理算法。最后,我们强调了所涉及的问题和正在进行的工作,以开发一个自动化方案的管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信