PROTAC Degraders with Ligands Recruiting MDM2 E3 Ubiquitin Ligase: An Updated Perspective.

Xin Han, Wenyi Wei, Yi Sun
{"title":"PROTAC Degraders with Ligands Recruiting MDM2 E3 Ubiquitin Ligase: An Updated Perspective.","authors":"Xin Han,&nbsp;Wenyi Wei,&nbsp;Yi Sun","doi":"10.15212/amm-2022-0010","DOIUrl":null,"url":null,"abstract":"<p><p>Mouse double minute 2 (MDM2) is an E3 ubiquitin ligase which effectively degrades tumor suppressor p53. In the past two decades, many MDM2 inhibitors that disrupt the MDM2-p53 binding have been discovered and developed. Given that the MDM2-p53 forms auto-regulatory loop in which p53 is a substrate of MDM2 for targeted degradation, while MDM2 is a p53 target for transcriptional upregulation, these MDM2 inhibitors have limited efficacy due to p53 degradation by accumulated MDM2 upon rapid <i>in vivo</i> clearance of the MDM2 inhibitors. Fortunately, proteolysis targeting chimeras (PROTACs), a novel therapeutic strategy, overcome the limitations of MDM2 inhibitors. Some of MDM2 inhibitors developed in the past two decades have been used in PROTAC technology for two applications: 1) as component 1 to bind with endogenous MDM2 as a target for PROTAC-based degradation of MDM2; and 2) as component 2 to bind with endogenous MDM2 as a PROTAC E3 ligand for PROTAC-based degradation of other oncogenic proteins. In this review, we summarize current progress in the discovery and development of MDM2-based PROTAC drugs with future perspectives and challenges for their applications in effective treatment of human cancer.</p>","PeriodicalId":72055,"journal":{"name":"Acta materia medica","volume":"1 2","pages":"244-259"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9211018/pdf/nihms-1812315.pdf","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta materia medica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15212/amm-2022-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Mouse double minute 2 (MDM2) is an E3 ubiquitin ligase which effectively degrades tumor suppressor p53. In the past two decades, many MDM2 inhibitors that disrupt the MDM2-p53 binding have been discovered and developed. Given that the MDM2-p53 forms auto-regulatory loop in which p53 is a substrate of MDM2 for targeted degradation, while MDM2 is a p53 target for transcriptional upregulation, these MDM2 inhibitors have limited efficacy due to p53 degradation by accumulated MDM2 upon rapid in vivo clearance of the MDM2 inhibitors. Fortunately, proteolysis targeting chimeras (PROTACs), a novel therapeutic strategy, overcome the limitations of MDM2 inhibitors. Some of MDM2 inhibitors developed in the past two decades have been used in PROTAC technology for two applications: 1) as component 1 to bind with endogenous MDM2 as a target for PROTAC-based degradation of MDM2; and 2) as component 2 to bind with endogenous MDM2 as a PROTAC E3 ligand for PROTAC-based degradation of other oncogenic proteins. In this review, we summarize current progress in the discovery and development of MDM2-based PROTAC drugs with future perspectives and challenges for their applications in effective treatment of human cancer.

Abstract Image

Abstract Image

Abstract Image

与配体招募MDM2 E3泛素连接酶的PROTAC降解物:一个最新的观点。
小鼠双分钟2 (MDM2)是一种E3泛素连接酶,可有效降解肿瘤抑制因子p53。在过去的二十年中,许多破坏MDM2-p53结合的MDM2抑制剂被发现和开发。考虑到MDM2-p53形成自调节回路,其中p53是MDM2靶向降解的底物,而MDM2是p53转录上调的靶标,这些MDM2抑制剂的功效有限,因为在体内快速清除MDM2抑制剂后,p53会被积累的MDM2降解。幸运的是,蛋白水解靶向嵌合体(PROTACs),一种新的治疗策略,克服了MDM2抑制剂的局限性。在过去二十年中开发的一些MDM2抑制剂在PROTAC技术中有两个应用:1)作为与内源性MDM2结合的组分1,作为基于PROTAC的MDM2降解的靶标;2)作为成分2与内源性MDM2结合,作为PROTAC E3配体,以PROTAC为基础降解其他致癌蛋白。本文综述了目前基于mdm2的PROTAC药物的发现和开发进展,展望了其在有效治疗人类癌症中的应用前景和面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信