Xue-Zheng Wang, Lei Chen, Hao Sun, Xiao-Qian Li, Hu Wang, Xiao-Peng Zhang, Jiang-Bin Sun, Hai-Yong Wang
{"title":"MiR-199a-3p promotes repair of myocardial infarction by targeting NACC2.","authors":"Xue-Zheng Wang, Lei Chen, Hao Sun, Xiao-Qian Li, Hu Wang, Xiao-Peng Zhang, Jiang-Bin Sun, Hai-Yong Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Myocardial infarction (MI) has gained widespread interest due to its high death and disability rate worldwide. Some miRNAs are markers of heart disease. Therefore, it is necessary to understand the mechanism for repairing MI injury.</p><p><strong>Methods: </strong>Here, we evaluated the relative expression levels of miR-199a-3p in mouse and human myocardial cell models of injury, and its effect on myocardial cells viability using Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridline (EdU) assay, and flow cytometry assay as well as western blot in vitro. Furthermore, we performed bioinformatic online analysis to investigate the role that miR-199a-3p plays in cardiomyocyte injury, measured by dual-luciferase reporter assay.</p><p><strong>Results: </strong>The results showed that miR-199a-3p significantly increased the growth rate of cardiomyocytes after treating them with hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). miR-199a-3p also acted as an inhibitor that directly targeted NACC2, resulting in a higher NACC2 expression level in the injury model of cardiomyocytes than normal myocardial cells and thus preventing miR-199a-3p-induced proliferation promotion in model cardiomyocytes.</p><p><strong>Conclusion: </strong>Our results demonstrate that miR-199a-3p may be a prognostic biomarker in myocardial injury.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076973/pdf/ijcep0016-0057.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Myocardial infarction (MI) has gained widespread interest due to its high death and disability rate worldwide. Some miRNAs are markers of heart disease. Therefore, it is necessary to understand the mechanism for repairing MI injury.
Methods: Here, we evaluated the relative expression levels of miR-199a-3p in mouse and human myocardial cell models of injury, and its effect on myocardial cells viability using Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridline (EdU) assay, and flow cytometry assay as well as western blot in vitro. Furthermore, we performed bioinformatic online analysis to investigate the role that miR-199a-3p plays in cardiomyocyte injury, measured by dual-luciferase reporter assay.
Results: The results showed that miR-199a-3p significantly increased the growth rate of cardiomyocytes after treating them with hydrogen peroxide (H2O2). miR-199a-3p also acted as an inhibitor that directly targeted NACC2, resulting in a higher NACC2 expression level in the injury model of cardiomyocytes than normal myocardial cells and thus preventing miR-199a-3p-induced proliferation promotion in model cardiomyocytes.
Conclusion: Our results demonstrate that miR-199a-3p may be a prognostic biomarker in myocardial injury.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.