Engineering biology in the face of uncertainty.

IF 3.6 3区 生物学 Q1 BIOLOGY
William T Sloan, Tania L Gómez-Borraz
{"title":"Engineering biology in the face of uncertainty.","authors":"William T Sloan,&nbsp;Tania L Gómez-Borraz","doi":"10.1098/rsfs.2023.0001","DOIUrl":null,"url":null,"abstract":"<p><p>Combining engineering and biology surely must be a route to delivering solutions to the world's most pressing problems in depleting resources, energy and the environment. Engineers and biologists have long recognized the power in coupling their disciplines and have evolved a healthy variety of approaches to realizing technologies. Yet recently, there has been a movement to narrow the remit of engineering biology. Its definition as 'the application of engineering principles to the design of biological systems' ought to encompass a broad church. However, the emphasis is firmly on construction '…of novel biological devices and systems from standardized artificial parts' within cells. Thus, engineering biology has become synonymous with synthetic biology, despite the many longstanding technologies that use natural microbial communities. The focus on the nuts and bolts of synthetic organisms may be deflecting attention from the significant challenge of delivering solutions at scale, which cuts across all engineering biology, synthetic and natural. Understanding, let alone controlling, every component of an engineered system is an unrealistic goal. To realize workable solutions in a timely manner we must develop systematic ways of engineering biology in the face of the uncertainties that are inherent in biological systems and that arise through lack of knowledge.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"13 4","pages":"20230001"},"PeriodicalIF":3.6000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251114/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2023.0001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Combining engineering and biology surely must be a route to delivering solutions to the world's most pressing problems in depleting resources, energy and the environment. Engineers and biologists have long recognized the power in coupling their disciplines and have evolved a healthy variety of approaches to realizing technologies. Yet recently, there has been a movement to narrow the remit of engineering biology. Its definition as 'the application of engineering principles to the design of biological systems' ought to encompass a broad church. However, the emphasis is firmly on construction '…of novel biological devices and systems from standardized artificial parts' within cells. Thus, engineering biology has become synonymous with synthetic biology, despite the many longstanding technologies that use natural microbial communities. The focus on the nuts and bolts of synthetic organisms may be deflecting attention from the significant challenge of delivering solutions at scale, which cuts across all engineering biology, synthetic and natural. Understanding, let alone controlling, every component of an engineered system is an unrealistic goal. To realize workable solutions in a timely manner we must develop systematic ways of engineering biology in the face of the uncertainties that are inherent in biological systems and that arise through lack of knowledge.

面对不确定性的工程生物学。
工程学和生物学的结合无疑是一条解决世界上最紧迫的资源、能源和环境消耗问题的途径。工程师和生物学家早就认识到将他们的学科结合起来的力量,并已经发展出各种健康的方法来实现技术。然而,最近出现了一种缩小工程生物学研究范围的运动。它的定义是“将工程原理应用于生物系统的设计”,应该包含一个广泛的教会。然而,重点是在细胞内构建“新型生物设备和标准化人工部件系统”。因此,工程生物学已经成为合成生物学的代名词,尽管许多长期存在的技术使用天然微生物群落。把注意力集中在合成生物的具体细节上,可能会转移人们对大规模提供解决方案的重大挑战的注意力,这一挑战涉及所有工程生物学,无论是合成的还是天然的。理解,更不用说控制,一个工程系统的每一个组成部分是一个不切实际的目标。为了及时实现可行的解决方案,我们必须在面对生物系统固有的不确定性和由于缺乏知识而产生的不确定性时,开发系统的工程生物学方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信