Data Integration in Causal Inference.

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY
Xu Shi, Ziyang Pan, Wang Miao
{"title":"Data Integration in Causal Inference.","authors":"Xu Shi,&nbsp;Ziyang Pan,&nbsp;Wang Miao","doi":"10.1002/wics.1581","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating data from multiple heterogeneous sources has become increasingly popular to achieve a large sample size and diverse study population. This paper reviews development in causal inference methods that combines multiple datasets collected by potentially different designs from potentially heterogeneous populations. We summarize recent advances on combining randomized clinical trial with external information from observational studies or historical controls, combining samples when no single sample has all relevant variables with application to two-sample Mendelian randomization, distributed data setting under privacy concerns for comparative effectiveness and safety research using real-world data, Bayesian causal inference, and causal discovery methods.</p>","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880960/pdf/","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1581","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9

Abstract

Integrating data from multiple heterogeneous sources has become increasingly popular to achieve a large sample size and diverse study population. This paper reviews development in causal inference methods that combines multiple datasets collected by potentially different designs from potentially heterogeneous populations. We summarize recent advances on combining randomized clinical trial with external information from observational studies or historical controls, combining samples when no single sample has all relevant variables with application to two-sample Mendelian randomization, distributed data setting under privacy concerns for comparative effectiveness and safety research using real-world data, Bayesian causal inference, and causal discovery methods.

Abstract Image

因果推理中的数据集成。
整合来自多个异构来源的数据越来越受欢迎,以实现大样本量和多样化的研究人群。本文综述了因果推理方法的发展,该方法结合了由潜在异质群体的潜在不同设计收集的多个数据集。我们总结了将随机临床试验与来自观察性研究或历史对照的外部信息相结合的最新进展,在没有单个样本具有所有相关变量的情况下将样本相结合,并应用于两个样本的孟德尔随机化,在隐私考虑下的分布式数据设置,以使用真实世界数据进行比较有效性和安全性研究,贝叶斯因果推断和因果发现方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信