Zhengsen Pan;Shusen Zhou;Tong Liu;Chanjuan Liu;Mujun Zang;Qingjun Wang
{"title":"WVDL: Weighted Voting Deep Learning Model for Predicting RNA-Protein Binding Sites","authors":"Zhengsen Pan;Shusen Zhou;Tong Liu;Chanjuan Liu;Mujun Zang;Qingjun Wang","doi":"10.1109/TCBB.2023.3252276","DOIUrl":null,"url":null,"abstract":"RNA-binding proteins are important for the process of cell life activities. High-throughput technique experimental method to discover RNA-protein binding sites is time-consuming and expensive. Deep learning is an effective theory for predicting RNA-protein binding sites. Using weighted voting method to integrate multiple basic classifier models can improve model performance. Thus, in our study, we propose a weighted voting deep learning model (WVDL), which uses weighted voting method to combine convolutional neural network (CNN), long short term memory network (LSTM) and residual network (ResNet). First, the final forecast result of WVDL outperforms the basic classifier models and other ensemble strategies. Second, WVDL can extract more effective features by using weighted voting to find the best weighted combination. And, the CNN model also can draw the predicted motif pictures. Third, WVDL gets a competitive experiment result on public RBP-24 datasets comparing with other state-of-the-art methods. The source code of our proposed WVDL can be found in \n<uri>https://github.com/biomg/WVDL</uri>\n.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"20 5","pages":"3322-3328"},"PeriodicalIF":3.4000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10058594/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
RNA-binding proteins are important for the process of cell life activities. High-throughput technique experimental method to discover RNA-protein binding sites is time-consuming and expensive. Deep learning is an effective theory for predicting RNA-protein binding sites. Using weighted voting method to integrate multiple basic classifier models can improve model performance. Thus, in our study, we propose a weighted voting deep learning model (WVDL), which uses weighted voting method to combine convolutional neural network (CNN), long short term memory network (LSTM) and residual network (ResNet). First, the final forecast result of WVDL outperforms the basic classifier models and other ensemble strategies. Second, WVDL can extract more effective features by using weighted voting to find the best weighted combination. And, the CNN model also can draw the predicted motif pictures. Third, WVDL gets a competitive experiment result on public RBP-24 datasets comparing with other state-of-the-art methods. The source code of our proposed WVDL can be found in
https://github.com/biomg/WVDL
.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system