Normalization of Large-Scale Transcriptome Data Using Heuristic Methods.

IF 2.3 Q3 BIOCHEMICAL RESEARCH METHODS
Arthur Yosef, Eli Shnaider, Moti Schneider, Michael Gurevich
{"title":"Normalization of Large-Scale Transcriptome Data Using Heuristic Methods.","authors":"Arthur Yosef,&nbsp;Eli Shnaider,&nbsp;Moti Schneider,&nbsp;Michael Gurevich","doi":"10.1177/11779322231160397","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we introduce an artificial intelligent method for addressing the batch effect of a transcriptome data. The method has several clear advantages in comparison with the alternative methods presently in use. Batch effect refers to the discrepancy in gene expression data series, measured under different conditions. While the data from the same batch (measurements performed under the same conditions) are compatible, combining various batches into 1 data set is problematic because of incompatible measurements. Therefore, it is necessary to perform correction of the combined data (normalization), before performing biological analysis. There are numerous methods attempting to correct data set for batch effect. These methods rely on various assumptions regarding the distribution of the measurements. Forcing the data elements into pre-supposed distribution can severely distort biological signals, thus leading to incorrect results and conclusions. As the discrepancy between the assumptions regarding the data distribution and the actual distribution is wider, the biases introduced by such \"correction methods\" are greater. We introduce a heuristic method to reduce batch effect. The method does not rely on any assumptions regarding the distribution and the behavior of data elements. Hence, it does not introduce any new biases in the process of correcting the batch effect. It strictly maintains the integrity of measurements within the original batches.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1a/e0/10.1177_11779322231160397.PMC10068970.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322231160397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduce an artificial intelligent method for addressing the batch effect of a transcriptome data. The method has several clear advantages in comparison with the alternative methods presently in use. Batch effect refers to the discrepancy in gene expression data series, measured under different conditions. While the data from the same batch (measurements performed under the same conditions) are compatible, combining various batches into 1 data set is problematic because of incompatible measurements. Therefore, it is necessary to perform correction of the combined data (normalization), before performing biological analysis. There are numerous methods attempting to correct data set for batch effect. These methods rely on various assumptions regarding the distribution of the measurements. Forcing the data elements into pre-supposed distribution can severely distort biological signals, thus leading to incorrect results and conclusions. As the discrepancy between the assumptions regarding the data distribution and the actual distribution is wider, the biases introduced by such "correction methods" are greater. We introduce a heuristic method to reduce batch effect. The method does not rely on any assumptions regarding the distribution and the behavior of data elements. Hence, it does not introduce any new biases in the process of correcting the batch effect. It strictly maintains the integrity of measurements within the original batches.

Abstract Image

Abstract Image

Abstract Image

使用启发式方法的大规模转录组数据规范化。
在这项研究中,我们介绍了一种人工智能方法来解决转录组数据的批量效应。与目前使用的替代方法相比,该方法有几个明显的优点。批效应是指在不同条件下测量的基因表达数据序列的差异。虽然来自同一批次(在相同条件下进行的测量)的数据是兼容的,但由于测量结果不兼容,将不同批次组合成一个数据集是有问题的。因此,在进行生物分析之前,有必要对组合数据进行校正(归一化)。有许多方法试图纠正数据集的批处理效果。这些方法依赖于关于测量分布的各种假设。强迫数据元素进入预先假定的分布会严重扭曲生物信号,从而导致不正确的结果和结论。由于对数据分布的假设与实际分布的差异越大,这种“校正方法”引入的偏差也越大。我们引入了一种启发式方法来减少批处理效应。该方法不依赖于关于数据元素的分布和行为的任何假设。因此,它不会在修正批效应的过程中引入任何新的偏差。严格保持原始批次测量的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinformatics and Biology Insights
Bioinformatics and Biology Insights BIOCHEMICAL RESEARCH METHODS-
CiteScore
6.80
自引率
1.70%
发文量
36
审稿时长
8 weeks
期刊介绍: Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信