Spatial distributions of airborne transmission risk on commuter buses: Numerical case study using computational fluid and particle dynamics with computer-simulated persons.
Sung-Jun Yoo, Akira Kurokawa, Kazuhiko Matsunaga, Kazuhide Ito
{"title":"Spatial distributions of airborne transmission risk on commuter buses: Numerical case study using computational fluid and particle dynamics with computer-simulated persons.","authors":"Sung-Jun Yoo, Akira Kurokawa, Kazuhiko Matsunaga, Kazuhide Ito","doi":"10.1007/s42757-022-0146-6","DOIUrl":null,"url":null,"abstract":"<p><p>Commuter buses have a high passenger density relative to the interior cabin volume, and it is difficult to maintain a physical/social distance in terms of airborne transmission control. Therefore, it is important to quantitatively investigate the impact of ventilation and air-conditioning in the cabin on the airborne transmission risk for passengers. In this study, comprehensive coupled numerical simulations using computational fluid and particle dynamics (CFPD) and computer-simulated persons (CSPs) were performed to investigate the heterogeneous spatial distribution of the airborne transmission risk in a commuter bus environment under two types of layouts of the ventilation system and two types of passenger densities. Through a series of particle transmission analysis and infection risk assessment in this study, it was revealed that the layout of the supply inlet/exhaust outlet openings of a heating, ventilation, and air-conditioning (HVAC) system has a significant impact on the particle dispersion characteristics inside the bus cabin, and higher infection risks were observed near the single exhaust outlet in the case of higher passenger density. The integrated analysis of CFPD and CSPs in a commuter bus cabin revealed that the airborne transmission risk formed significant heterogeneous spatial distributions, and the changes in air-conditioning conditions had a certain impact on the risk.</p>","PeriodicalId":53125,"journal":{"name":"Experimental and Computational Multiphase Flow","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912221/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Computational Multiphase Flow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42757-022-0146-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4
Abstract
Commuter buses have a high passenger density relative to the interior cabin volume, and it is difficult to maintain a physical/social distance in terms of airborne transmission control. Therefore, it is important to quantitatively investigate the impact of ventilation and air-conditioning in the cabin on the airborne transmission risk for passengers. In this study, comprehensive coupled numerical simulations using computational fluid and particle dynamics (CFPD) and computer-simulated persons (CSPs) were performed to investigate the heterogeneous spatial distribution of the airborne transmission risk in a commuter bus environment under two types of layouts of the ventilation system and two types of passenger densities. Through a series of particle transmission analysis and infection risk assessment in this study, it was revealed that the layout of the supply inlet/exhaust outlet openings of a heating, ventilation, and air-conditioning (HVAC) system has a significant impact on the particle dispersion characteristics inside the bus cabin, and higher infection risks were observed near the single exhaust outlet in the case of higher passenger density. The integrated analysis of CFPD and CSPs in a commuter bus cabin revealed that the airborne transmission risk formed significant heterogeneous spatial distributions, and the changes in air-conditioning conditions had a certain impact on the risk.
期刊介绍:
Experimental and Computational Multiphase Flow is a peer-reviewed international academic journal that publishes research papers and significant review articles on multiphase flows.
Focuses on transport phenomena of mass, momentum, and heat from theoretical, experimental, and computational perspectives.
Publishes scholarly research papers, invited review articles, brief communications, letters, and comments on previously published papers.
Covers a broad scope including interface interaction, multiphase dynamics, heat transfers, phase changes, and more.
Fields of application include nuclear, chemical, petroleum, environmental, mineral, pharmaceutical, bio-mechanical, and mechanical engineering.