Najmus S Mahfooz, Marlena R Merling, Tiffany A Claeys, Jack W Dowling, Adriana Forero, Richard T Robinson
{"title":"Human IL-35 Inhibits the Bioactivity of IL-12 and Its Interaction with IL-12Rβ2.","authors":"Najmus S Mahfooz, Marlena R Merling, Tiffany A Claeys, Jack W Dowling, Adriana Forero, Richard T Robinson","doi":"10.4049/immunohorizons.2300039","DOIUrl":null,"url":null,"abstract":"<p><p>IL-35 is an immunosuppressive cytokine with roles in cancer, autoimmunity, and infectious disease. In the conventional model of IL-35 biology, the p35 and Ebi3 domains of this cytokine interact with IL-12Rβ2 and gp130, respectively, on the cell surface of regulatory T and regulatory B cells, triggering their suppression of Th cell activity. Here we use a human IL-12 bioactivity reporter cell line, protein binding assays, and primary human Th cells to demonstrate an additional mechanism by which IL-35 suppresses Th cell activity, wherein IL-35 directly inhibits the association of IL-12 with its surface receptor IL-12Rβ2 and downstream IL-12-dependent activities. IL-12 binding to the surface receptor IL-12Rβ1 was unaffected by IL-35. These data demonstrate that in addition to acting via regulatory T and regulatory B cells, human IL-35 can also directly suppress IL-12 bioactivity and its interaction with IL-12Rβ2.</p>","PeriodicalId":13448,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4049/immunohorizons.2300039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
IL-35 is an immunosuppressive cytokine with roles in cancer, autoimmunity, and infectious disease. In the conventional model of IL-35 biology, the p35 and Ebi3 domains of this cytokine interact with IL-12Rβ2 and gp130, respectively, on the cell surface of regulatory T and regulatory B cells, triggering their suppression of Th cell activity. Here we use a human IL-12 bioactivity reporter cell line, protein binding assays, and primary human Th cells to demonstrate an additional mechanism by which IL-35 suppresses Th cell activity, wherein IL-35 directly inhibits the association of IL-12 with its surface receptor IL-12Rβ2 and downstream IL-12-dependent activities. IL-12 binding to the surface receptor IL-12Rβ1 was unaffected by IL-35. These data demonstrate that in addition to acting via regulatory T and regulatory B cells, human IL-35 can also directly suppress IL-12 bioactivity and its interaction with IL-12Rβ2.