Mark B Zimering, N Mirkovic, M Pandya, J H Zimering, J A Behnke, S Thakker-Varia, J Alder, R J Donnelly
{"title":"Toxic Immunoglobulin Light Chain Autoantibodies are Associated with a Cluster of Severe Complications in Older Adult Type 2 Diabetes.","authors":"Mark B Zimering, N Mirkovic, M Pandya, J H Zimering, J A Behnke, S Thakker-Varia, J Alder, R J Donnelly","doi":"10.15226/2374-6890/3/1/00141","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>To assess neuronal depolarization evoked by autoantibodies in diabetic depression compared to depolarization evoked by autoantibodies in control patients. To determine whether a subset of severe (late-onset) diabetic complications may be mediated in part by toxic immunoglobulin light chains that may increase in diabetic nephropathy.</p><p><strong>Methods: </strong>Protein-A eluates from plasma of 21 diabetic depression patients and 37 age-matched controls were tested for depolarization in hippocampal or immature neurons. Subsets of depolarizing or non-depolarizing autoantibodies were tested for neurite outgrowth inhibition in N2A neuroblastoma cells or the ability to modulate Ca<sup>2+</sup> release in HL-1 atrial cardiomyocytes or in endothelial cells. The stability of depolarizing autoantibodies was investigated by heat treatment (56°C × 30 minutes) or following prolonged exposure to the pro-protein convertase, furin. Gel filtration of active depolarizing autoantibodies was performed to determine the apparent molecular mass of peak neurotoxicity associated with the autoantibodies.</p><p><strong>Results: </strong>Diabetic depression (n = 21) autoantibodies caused significantly greater mean depolarization in neuroblastoma cells (<i>P < 0.01</i>) compared to autoantibodies in diabetic (n = 15) or non-diabetic (n = 11) patients without depression. Depolarizing autoantibodies caused significantly more (<i>P=0.011</i>) inhibition of neurite outgrowth in neuroblastoma cells than non-depolarizing autoantibodies (n = 10) and they evoked sustained, global intracellular Ca<sup>2+</sup> release in atrial cardiomyocytes or in endothelial cells. A subset of older diabetic patients suffering with a cluster of nephropathy, non-ischemic cardiomyopathy and/or depression demonstrated the presence of stable light chain dimers having apparent MW of 46 kD and associated with peak neurotoxicity in neuroblastoma cells.</p><p><strong>Conclusion: </strong>These data suggest that autoantibodies in older adult diabetic depression cause long-lasting depolarization in hippocampal neurons including adult dentate gyrus neural progenitor cells. The autoantibodies may impair adult dentate gyrus neurogenesis associated with treatment-refractory depression via several mechanisms including suppression of neurite outgrowth, and alteration of membrane excitability. Stable, toxic light chain autoantibody components may contribute to a cluster of severe (late-onset) complications characterized by dysfunction in highly vascularized tissues.</p>","PeriodicalId":73731,"journal":{"name":"Journal of endocrinology and diabetes","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5963888/pdf/nihms967346.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of endocrinology and diabetes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15226/2374-6890/3/1/00141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/3/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: To assess neuronal depolarization evoked by autoantibodies in diabetic depression compared to depolarization evoked by autoantibodies in control patients. To determine whether a subset of severe (late-onset) diabetic complications may be mediated in part by toxic immunoglobulin light chains that may increase in diabetic nephropathy.
Methods: Protein-A eluates from plasma of 21 diabetic depression patients and 37 age-matched controls were tested for depolarization in hippocampal or immature neurons. Subsets of depolarizing or non-depolarizing autoantibodies were tested for neurite outgrowth inhibition in N2A neuroblastoma cells or the ability to modulate Ca2+ release in HL-1 atrial cardiomyocytes or in endothelial cells. The stability of depolarizing autoantibodies was investigated by heat treatment (56°C × 30 minutes) or following prolonged exposure to the pro-protein convertase, furin. Gel filtration of active depolarizing autoantibodies was performed to determine the apparent molecular mass of peak neurotoxicity associated with the autoantibodies.
Results: Diabetic depression (n = 21) autoantibodies caused significantly greater mean depolarization in neuroblastoma cells (P < 0.01) compared to autoantibodies in diabetic (n = 15) or non-diabetic (n = 11) patients without depression. Depolarizing autoantibodies caused significantly more (P=0.011) inhibition of neurite outgrowth in neuroblastoma cells than non-depolarizing autoantibodies (n = 10) and they evoked sustained, global intracellular Ca2+ release in atrial cardiomyocytes or in endothelial cells. A subset of older diabetic patients suffering with a cluster of nephropathy, non-ischemic cardiomyopathy and/or depression demonstrated the presence of stable light chain dimers having apparent MW of 46 kD and associated with peak neurotoxicity in neuroblastoma cells.
Conclusion: These data suggest that autoantibodies in older adult diabetic depression cause long-lasting depolarization in hippocampal neurons including adult dentate gyrus neural progenitor cells. The autoantibodies may impair adult dentate gyrus neurogenesis associated with treatment-refractory depression via several mechanisms including suppression of neurite outgrowth, and alteration of membrane excitability. Stable, toxic light chain autoantibody components may contribute to a cluster of severe (late-onset) complications characterized by dysfunction in highly vascularized tissues.