{"title":"Green function estimates on complements of low-dimensional uniformly rectifiable sets.","authors":"Guy David, Joseph Feneuil, Svitlana Mayboroda","doi":"10.1007/s00208-022-02379-8","DOIUrl":null,"url":null,"abstract":"<p><p>It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions. arXiv:2010.09793) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the \"flagship\" degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators <math> <mrow><msub><mi>L</mi> <mrow><mi>β</mi> <mo>,</mo> <mi>γ</mi></mrow> </msub> <mo>=</mo> <mo>-</mo> <mtext>div</mtext> <msup><mi>D</mi> <mrow><mi>d</mi> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mi>γ</mi> <mo>-</mo> <mi>n</mi></mrow> </msup> <mi>∇</mi></mrow> </math> associated to a domain <math><mrow><mi>Ω</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </mrow> </math> with a uniformly rectifiable boundary <math><mi>Γ</mi></math> of dimension <math><mrow><mi>d</mi> <mo><</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn></mrow> </math> , the now usual distance to the boundary <math><mrow><mi>D</mi> <mo>=</mo> <msub><mi>D</mi> <mi>β</mi></msub> </mrow> </math> given by <math> <mrow><msub><mi>D</mi> <mi>β</mi></msub> <msup><mrow><mo>(</mo> <mi>X</mi> <mo>)</mo></mrow> <mrow><mo>-</mo> <mi>β</mi></mrow> </msup> <mo>=</mo> <msub><mo>∫</mo> <mi>Γ</mi></msub> <msup><mrow><mo>|</mo> <mi>X</mi> <mo>-</mo> <mi>y</mi> <mo>|</mo></mrow> <mrow><mo>-</mo> <mi>d</mi> <mo>-</mo> <mi>β</mi></mrow> </msup> <mi>d</mi> <mi>σ</mi> <mrow><mo>(</mo> <mi>y</mi> <mo>)</mo></mrow> </mrow> </math> for <math><mrow><mi>X</mi> <mo>∈</mo> <mi>Ω</mi></mrow> </math> , where <math><mrow><mi>β</mi> <mo>></mo> <mn>0</mn></mrow> </math> and <math><mrow><mi>γ</mi> <mo>∈</mo> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo></mrow> </math> . In this paper we show that the Green function <i>G</i> for <math><msub><mi>L</mi> <mrow><mi>β</mi> <mo>,</mo> <mi>γ</mi></mrow> </msub> </math> , with pole at infinity, is well approximated by multiples of <math><msup><mi>D</mi> <mrow><mn>1</mn> <mo>-</mo> <mi>γ</mi></mrow> </msup> </math> , in the sense that the function <math> <mrow><mrow><mo>|</mo></mrow> <mi>D</mi> <mi>∇</mi> <mrow><mo>(</mo></mrow> <mo>ln</mo> <mrow><mo>(</mo></mrow> <mfrac><mi>G</mi> <msup><mi>D</mi> <mrow><mn>1</mn> <mo>-</mo> <mi>γ</mi></mrow> </msup> </mfrac> <mrow><mo>)</mo></mrow> <mrow><mo>)</mo></mrow> <msup><mrow><mo>|</mo></mrow> <mn>2</mn></msup> </mrow> </math> satisfies a Carleson measure estimate on <math><mi>Ω</mi></math> . We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the \"magical\" distance function from David et al. (Duke Math J, to appear).</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"385 3-4","pages":"1797-1821"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10042934/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-022-02379-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
Abstract
It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions. arXiv:2010.09793) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the "flagship" degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators associated to a domain with a uniformly rectifiable boundary of dimension , the now usual distance to the boundary given by for , where and . In this paper we show that the Green function G for , with pole at infinity, is well approximated by multiples of , in the sense that the function satisfies a Carleson measure estimate on . We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the "magical" distance function from David et al. (Duke Math J, to appear).
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.