Stability and Bifurcation in the Two-Dimensional Stochastic Zeeman Heartbeat Model.

IF 0.6 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL
Yeganeh Rahimi, Mehdi Fatehi Nia
{"title":"Stability and Bifurcation in the Two-Dimensional Stochastic Zeeman Heartbeat Model.","authors":"Yeganeh Rahimi,&nbsp;Mehdi Fatehi Nia","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Comparison of some experimental data and deterministic dynamical models of heartbeat show that it is essential to consider stochastic mathematical models. The Zeeman heartbeat model is one of the main heartbeat models whose stochastic dynamics is less studied. Especially, investigating bifurcations in stochastic dynamical models can be useful for identifying abnormal cardiac rhythms. This paper is concerned with two essential features of the two dimensional stochastic Zeeman heartbeat model i.e., stability and bifurcation. To achieve this approach, Taylor expansion, polar coordinate transformation, and stochastic averaging procedure will be used to convert the classical system into an Ito averaging diffusion system. Furthermore, we consider several theorems which provide sufficient conditions of drift and diffusion coefficients to establish stochastic stability, D-bifurcation and phenomenological bifurcation of the model. In the end, numerical simulation plays an important role to show the influences of the noise severity and confirm our theoretical results.</p>","PeriodicalId":46218,"journal":{"name":"Nonlinear Dynamics Psychology and Life Sciences","volume":"27 2","pages":"129-147"},"PeriodicalIF":0.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Dynamics Psychology and Life Sciences","FirstCategoryId":"102","ListUrlMain":"","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Comparison of some experimental data and deterministic dynamical models of heartbeat show that it is essential to consider stochastic mathematical models. The Zeeman heartbeat model is one of the main heartbeat models whose stochastic dynamics is less studied. Especially, investigating bifurcations in stochastic dynamical models can be useful for identifying abnormal cardiac rhythms. This paper is concerned with two essential features of the two dimensional stochastic Zeeman heartbeat model i.e., stability and bifurcation. To achieve this approach, Taylor expansion, polar coordinate transformation, and stochastic averaging procedure will be used to convert the classical system into an Ito averaging diffusion system. Furthermore, we consider several theorems which provide sufficient conditions of drift and diffusion coefficients to establish stochastic stability, D-bifurcation and phenomenological bifurcation of the model. In the end, numerical simulation plays an important role to show the influences of the noise severity and confirm our theoretical results.

二维随机塞曼心跳模型的稳定性和分岔。
一些实验数据和确定的心跳动力学模型的比较表明,考虑随机数学模型是必要的。Zeeman心跳模型是目前研究较少的主要心跳模型之一。特别是,研究随机动力学模型中的分岔可以用于识别异常心律。本文研究了二维随机塞曼心跳模型的两个基本特征:稳定性和分岔性。为了实现这一方法,将使用Taylor展开、极坐标变换和随机平均程序将经典系统转换为Ito平均扩散系统。进一步,我们考虑了几个定理,这些定理提供了漂移系数和扩散系数的充分条件,从而建立了模型的随机稳定性、d分岔和现象学分岔。最后,通过数值模拟验证了噪声强度的影响,验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
11.10%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信