{"title":"Evolving fuzzy neural classifier that integrates uncertainty from human-expert feedback.","authors":"Paulo Vitor de Campos Souza, Edwin Lughofer","doi":"10.1007/s12530-022-09455-z","DOIUrl":null,"url":null,"abstract":"<p><p>Evolving fuzzy neural networks are models capable of solving complex problems in a wide variety of contexts. In general, the quality of the data evaluated by a model has a direct impact on the quality of the results. Some procedures can generate uncertainty during data collection, which can be identified by experts to choose more suitable forms of model training. This paper proposes the integration of expert input on labeling uncertainty into evolving fuzzy neural classifiers (EFNC) in an approach called <i>EFNC-U</i>. Uncertainty is considered in class label input provided by experts, who may not be entirely confident in their labeling or who may have limited experience with the application scenario for which the data is processed. Further, we aimed to create highly interpretable fuzzy classification rules to gain a better understanding of the process and thus to enable the user to elicit new knowledge from the model. To prove our technique, we performed binary pattern classification tests within two application scenarios, cyber invasion and fraud detection in auctions. By explicitly considering class label uncertainty in the update process of the EFNC-U, improved accuracy trend lines were achieved compared to fully (and blindly) updating the classifiers with uncertain data. Integration of (simulated) labeling uncertainty smaller than 20% led to similar accuracy trends as using the original streams (unaffected by uncertainty). This demonstrates the robustness of our approach up to this uncertainty level. Finally, interpretable rules were elicited for a particular application (auction fraud identification) with reduced (and thus readable) antecedent lengths and with certainty values in the consequent class labels. Additionally, an average expected uncertainty of the rules were elicited based on the uncertainty levels in those samples which formed the corresponding rules.</p>","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"14 2","pages":"319-341"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061807/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolving Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12530-022-09455-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
Evolving fuzzy neural networks are models capable of solving complex problems in a wide variety of contexts. In general, the quality of the data evaluated by a model has a direct impact on the quality of the results. Some procedures can generate uncertainty during data collection, which can be identified by experts to choose more suitable forms of model training. This paper proposes the integration of expert input on labeling uncertainty into evolving fuzzy neural classifiers (EFNC) in an approach called EFNC-U. Uncertainty is considered in class label input provided by experts, who may not be entirely confident in their labeling or who may have limited experience with the application scenario for which the data is processed. Further, we aimed to create highly interpretable fuzzy classification rules to gain a better understanding of the process and thus to enable the user to elicit new knowledge from the model. To prove our technique, we performed binary pattern classification tests within two application scenarios, cyber invasion and fraud detection in auctions. By explicitly considering class label uncertainty in the update process of the EFNC-U, improved accuracy trend lines were achieved compared to fully (and blindly) updating the classifiers with uncertain data. Integration of (simulated) labeling uncertainty smaller than 20% led to similar accuracy trends as using the original streams (unaffected by uncertainty). This demonstrates the robustness of our approach up to this uncertainty level. Finally, interpretable rules were elicited for a particular application (auction fraud identification) with reduced (and thus readable) antecedent lengths and with certainty values in the consequent class labels. Additionally, an average expected uncertainty of the rules were elicited based on the uncertainty levels in those samples which formed the corresponding rules.
期刊介绍:
Evolving Systems covers surveys, methodological, and application-oriented papers in the area of dynamically evolving systems. ‘Evolving systems’ are inspired by the idea of system model evolution in a dynamically changing and evolving environment. In contrast to the standard approach in machine learning, mathematical modelling and related disciplines where the model structure is assumed and fixed a priori and the problem is focused on parametric optimisation, evolving systems allow the model structure to gradually change/evolve. The aim of such continuous or life-long learning and domain adaptation is self-organization. It can adapt to new data patterns, is more suitable for streaming data, transfer learning and can recognise and learn from unknown and unpredictable data patterns. Such properties are critically important for autonomous, robotic systems that continue to learn and adapt after they are being designed (at run time).
Evolving Systems solicits publications that address the problems of all aspects of system modelling, clustering, classification, prediction and control in non-stationary, unpredictable environments and describe new methods and approaches for their design.
The journal is devoted to the topic of self-developing, self-organised, and evolving systems in its entirety — from systematic methods to case studies and real industrial applications. It covers all aspects of the methodology such as
Evolving Systems methodology
Evolving Neural Networks and Neuro-fuzzy Systems
Evolving Classifiers and Clustering
Evolving Controllers and Predictive models
Evolving Explainable AI systems
Evolving Systems applications
but also looking at new paradigms and applications, including medicine, robotics, business, industrial automation, control systems, transportation, communications, environmental monitoring, biomedical systems, security, and electronic services, finance and economics. The common features for all submitted methods and systems are the evolving nature of the systems and the environments.
The journal is encompassing contributions related to:
1) Methods of machine learning, AI, computational intelligence and mathematical modelling
2) Inspiration from Nature and Biology, including Neuroscience, Bioinformatics and Molecular biology, Quantum physics
3) Applications in engineering, business, social sciences.