Martin Roelsgaard, Magnus Kløve, Rasmus Christensen, Andreas D Bertelsen, Nils L N Broge, Innokenty Kantor, Daniel Risskov Sørensen, Ann-Christin Dippel, Soham Banerjee, Martin V Zimmermann, Philipp Glaevecke, Olof Gutowski, Mads Ry Vogel Jørgensen, Bo Brummerstedt Iversen
{"title":"A reactor for time-resolved X-ray studies of nucleation and growth during solvothermal synthesis.","authors":"Martin Roelsgaard, Magnus Kløve, Rasmus Christensen, Andreas D Bertelsen, Nils L N Broge, Innokenty Kantor, Daniel Risskov Sørensen, Ann-Christin Dippel, Soham Banerjee, Martin V Zimmermann, Philipp Glaevecke, Olof Gutowski, Mads Ry Vogel Jørgensen, Bo Brummerstedt Iversen","doi":"10.1107/S1600576723002339","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the nucleation and growth mechanisms of nanocrystals under hydro- and solvothermal conditions is key to tailoring functional nanomaterials. High-energy and high-flux synchrotron radiation is ideal for characterization by powder X-ray diffraction and X-ray total scattering in real time. Different versions of batch-type cell reactors have been employed in this work, exploiting the robustness of polyimide-coated fused quartz tubes with an inner diameter of 0.7 mm, as they can withstand pressures up to 250 bar and temperatures up to 723 K for several hours. Reported here are recent developments of the <i>in situ</i> setups available for general users on the P21.1 beamline at PETRA III and the DanMAX beamline at MAX IV to study nucleation and growth phenomena in solvothermal synthesis. It is shown that data suitable for both reciprocal-space Rietveld refinement and direct-space pair distribution function refinement can be obtained on a timescale of 4 ms.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"56 Pt 3","pages":"581-588"},"PeriodicalIF":6.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576723002339","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the nucleation and growth mechanisms of nanocrystals under hydro- and solvothermal conditions is key to tailoring functional nanomaterials. High-energy and high-flux synchrotron radiation is ideal for characterization by powder X-ray diffraction and X-ray total scattering in real time. Different versions of batch-type cell reactors have been employed in this work, exploiting the robustness of polyimide-coated fused quartz tubes with an inner diameter of 0.7 mm, as they can withstand pressures up to 250 bar and temperatures up to 723 K for several hours. Reported here are recent developments of the in situ setups available for general users on the P21.1 beamline at PETRA III and the DanMAX beamline at MAX IV to study nucleation and growth phenomena in solvothermal synthesis. It is shown that data suitable for both reciprocal-space Rietveld refinement and direct-space pair distribution function refinement can be obtained on a timescale of 4 ms.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.